Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a19, author = {Lu, Weihua and Yang, Chao and Ren, Han}, title = {Lower {Bound} on the {Number} of {Hamiltonian} {Cycles} of {Generalized} {Petersen} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {297--305}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a19/} }
TY - JOUR AU - Lu, Weihua AU - Yang, Chao AU - Ren, Han TI - Lower Bound on the Number of Hamiltonian Cycles of Generalized Petersen Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 297 EP - 305 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a19/ LA - en ID - DMGT_2020_40_1_a19 ER -
%0 Journal Article %A Lu, Weihua %A Yang, Chao %A Ren, Han %T Lower Bound on the Number of Hamiltonian Cycles of Generalized Petersen Graphs %J Discussiones Mathematicae. Graph Theory %D 2020 %P 297-305 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a19/ %G en %F DMGT_2020_40_1_a19
Lu, Weihua; Yang, Chao; Ren, Han. Lower Bound on the Number of Hamiltonian Cycles of Generalized Petersen Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 297-305. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a19/
[1] B. Alspach, The classification of Hamiltonian generalized Petersen graphs, J. Combin. Theory Ser. B 34 (1983) 293–312. doi:10.1016/0095-8956(83)90042-4
[2] K. Bannai, Hamiltonian cycles in generalized Petersen graphs, J. Combin. Theory Ser. B 24 (1978) 181–188. doi:10.1016/0095-8956(78)90019-9
[3] J.A. Bondy, Variations on the Hamiltonian theme, Canad. Math. Bull. 15 (1972) 57–62. doi:10.4153/CMB-1972-012-3
[4] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[5] F. Castagna and G. Prins, Every generalized Petersen graph has a Tait coloring, Pacific J. Math. 40 (1972) 53–58. doi:10.2140/pjm.1972.40.53
[6] C. Cooper and A.M. Frieze, On the number of Hamiltonian cycles in a random graph, J. Graph Theory 13 (1989) 719–735. doi:10.1002/jgt.3190130608
[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[8] C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994).
[9] G.N. Robertson, Graphs under Girth, Valency, and Connectivity Constraints, PhD. Thesis (University of Waterloo, Ontario, Canada, 1968).
[10] A. Schwenk, Enumeration of Hamiltonian cycles in certain generalized Petersen graphs, J. Combin. Theory Ser. B 47 (1989) 53–59. doi:10.1016/0095-8956(89)90064-6
[11] A. Thomason, Cubic graphs with three Hamiltonian cycles are not always uniquely edge colorable, J. Graph Theory 6 (1982) 219–221. doi:10.1002/jgt.3190060218
[12] A.G. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Ann. Discrete Math. 3 (1978) 259–268. doi:10.1016/S0167-5060(08)70511-9
[13] W.T. Tutte, On Hamiltonian circuits, J. Lond. Math. Soc. (2) 21 (1946) 98–101. doi:10.1112/jlms/s1-21.2.98
[14] M.E. Watkins, A theorem on tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969) 152–164. doi:10.1016/S0021-9800(69)80116-X