Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a18, author = {Sonntag, Martin and Teichert, Hanns-Martin}, title = {Niche {Hypergraphs} of {Products} of {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {279--295}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a18/} }
TY - JOUR AU - Sonntag, Martin AU - Teichert, Hanns-Martin TI - Niche Hypergraphs of Products of Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 279 EP - 295 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a18/ LA - en ID - DMGT_2020_40_1_a18 ER -
Sonntag, Martin; Teichert, Hanns-Martin. Niche Hypergraphs of Products of Digraphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 279-295. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a18/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001).
[2] C. Cable, K.F. Jones, J.R. Lundgren and S. Seager, Niche graphs, Discrete Appl. Math. 23 (1989) 231–241. doi:10.1016/0166-218X(89)90015-2
[3] J.E. Cohen, Interval graphs and food webs: a finding and a problem, RAND Corp. Document 17696-PR (Santa Monica, CA, 1968).
[4] M. Cozzens, Food webs, competition graphs and habitat formation, Math. Model. Nat. Phenom. 6 (2011) 22–38. doi:10.1051/mmnp/20116602
[5] C. Garske, M. Sonntag and H.-M. Teichert, Niche hypergraphs, Discuss. Math. Graph Theory 36 (2016) 819–832. doi:10.7151/dmgt.1893
[6] S.-R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory?, Ed(s) J. Gimbel, J.W. Kennedy and L.V. Quintas (Ann. Discrete Math. 55, North Holland, Amsterdam, 1993). doi:10.1016/S0167-5060(08)70396-0
[7] S.-R. Kim, B. Park and Y. Sano, The competition number of the complement of a cycle, Discrete Appl. Math. 161 (2013) 1755–1760. doi:10.1016/j.dam.2011.10.034
[8] S.-R. Kim, B. Park and Y. Sano, A generalization of Opsut ’ s result on the competition numbers of line graphs, Discrete Appl. Math. 181 (2015) 152–159. doi:10.1016/j.dam.2014.10.014
[9] J. Kuhl, Transversals and competition numbers of complete multipartite graphs, Discrete Appl. Math. 161 (2013) 435–440. doi:10.1016/j.dam.2012.09.012
[10] B.-J. Li and G.J. Chang, Competition numbers of complete r-partite graphs, Discrete Appl. Math. 160 (2012) 2271–2276. doi:10.1016/j.dam.2012.05.005
[11] J.R. Lundgren, Food webs, competition graphs, competition—common enemy graphs and niche graphs, in: Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, Ed(s) F. Roberts (IMA 17, Springer, New York 1989) 221–243.
[12] B.D. McKey, P. Schweitzer and P. Schweitzer, Competition numbers, quasi line graphs and holes, SIAM J. Discrete Math. 28 (2014) 77–91. doi:10.1137/110856277
[13] B. Park and Y. Sano, On the hypercompetition numbers of hypergraphs, Ars Combin. 100 (2011) 151–159.
[14] B. Park and Y. Sano, The competition numbers of ternary Hamming graphs, Appl. Math. Lett. 24 (2011) 1608–1613. doi:10.1016/j.aml.2011.04.012
[15] B. Park and Y. Sano, The competition number of a generalized line graph is at most two, Discrete Math. Theor. Comput. Sci. 14 (2012) 1–10.
[16] J. Park and Y. Sano, The double competition hypergraph of a digraph, Discrete Appl. Math. 195 (2015) 110–113. doi:10.1016/j.dam.2014.04.001
[17] Y. Sano, On hypercompetition numbers of hypergraphs with maximum degree of at most two, Discuss. Math. Graph Theory 35 (2015) 595–598. doi:10.7151/dmgt.1826
[18] D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269–280. doi:10.1016/0166-218X(87)90030-8
[19] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324–329. doi:10.1016/j.dam.2004.02.010
[20] M. Sonntag and H.-M. Teichert, Competition hypergraphs of products of digraphs, Graphs Combin. 25 (2009) 611–624. doi:10.1007/s00373-005-0868-9
[21] M. Sonntag and H.-M. Teichert, Products of digraphs and their competition graphs, Discuss. Math. Graph Theory 36 (2016) 43–58. doi:10.7151/dmgt.1851