Longer Cycles in Essentially 4-Connected Planar Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 269-277.

Voir la notice de l'article provenant de la source Library of Science

A planar 3-connected graph G is called essentially 4-connected if, for every 3-separator S, at least one of the two components of G − S is an isolated vertex. Jackson and Wormald proved that the length circ (G) of a longest cycle of any essentially 4-connected planar graph G on n vertices is at least 2n+4 /5 and Fabrici, Harant and Jendrol’ improved this result to circ (G) ≥ 1/2 (n+4). In the present paper, we prove that an essentially 4-connected planar graph on n vertices contains a cycle of length at least 3/5 (n+2) and that such a cycle can be found in time O(n^2).
Keywords: essentially 4-connected planar graph, longest cycle, circumference, shortness coefficient
@article{DMGT_2020_40_1_a17,
     author = {Fabrici, Igor and Harant, Jochen and Mohr, Samuel and Schmidt, Jens M.},
     title = {Longer {Cycles} in {Essentially} {4-Connected} {Planar} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {269--277},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a17/}
}
TY  - JOUR
AU  - Fabrici, Igor
AU  - Harant, Jochen
AU  - Mohr, Samuel
AU  - Schmidt, Jens M.
TI  - Longer Cycles in Essentially 4-Connected Planar Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 269
EP  - 277
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a17/
LA  - en
ID  - DMGT_2020_40_1_a17
ER  - 
%0 Journal Article
%A Fabrici, Igor
%A Harant, Jochen
%A Mohr, Samuel
%A Schmidt, Jens M.
%T Longer Cycles in Essentially 4-Connected Planar Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 269-277
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a17/
%G en
%F DMGT_2020_40_1_a17
Fabrici, Igor; Harant, Jochen; Mohr, Samuel; Schmidt, Jens M. Longer Cycles in Essentially 4-Connected Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 269-277. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a17/

[1] M.B. Dillencourt, Polyhedra of small order and their Hamiltonian properties, J. Combin. Theory Ser. B 66 (1996) 87–122. doi:10.1006/jctb.1996.0008

[2] I. Fabrici, J. Harant and S. Jendrol’, On longest cycles in essentially 4 -connected planar graphs, Discuss. Math. Graph Theory 36 (2016) 565–575. doi:10.7151/dmgt.1875

[3] B. Grünbaum and J. Malkevitch, Pairs of edge-disjoint Hamilton circuits, Aequationes Math. 14 (1976) 191–196. doi:10.1007/BF01836218

[4] B. Jackson and N.C. Wormald, Longest cycles in 3 -connected planar graphs, J. Combin. Theory Ser. B 54 (1992) 291–321. doi:10.1016/0095-8956(92)90058-6

[5] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997) 341–345. doi:10.1002/(SICI)1097-0118(199704)24:4h341::AID-JGT6i3.0.CO;2-O

[6] A. Schmid and J.M. Schmidt, Computing Tutte paths (2017), arXiv-preprint. https://arxiv.org/abs/1707.05994

[7] C.-Q. Zhang, Longest cycles and their chords, J. Graph Theory 11 (1987) 521–529. doi:10.1002/jgt.3190110409