Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a17, author = {Fabrici, Igor and Harant, Jochen and Mohr, Samuel and Schmidt, Jens M.}, title = {Longer {Cycles} in {Essentially} {4-Connected} {Planar} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {269--277}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a17/} }
TY - JOUR AU - Fabrici, Igor AU - Harant, Jochen AU - Mohr, Samuel AU - Schmidt, Jens M. TI - Longer Cycles in Essentially 4-Connected Planar Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 269 EP - 277 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a17/ LA - en ID - DMGT_2020_40_1_a17 ER -
%0 Journal Article %A Fabrici, Igor %A Harant, Jochen %A Mohr, Samuel %A Schmidt, Jens M. %T Longer Cycles in Essentially 4-Connected Planar Graphs %J Discussiones Mathematicae. Graph Theory %D 2020 %P 269-277 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a17/ %G en %F DMGT_2020_40_1_a17
Fabrici, Igor; Harant, Jochen; Mohr, Samuel; Schmidt, Jens M. Longer Cycles in Essentially 4-Connected Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 269-277. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a17/
[1] M.B. Dillencourt, Polyhedra of small order and their Hamiltonian properties, J. Combin. Theory Ser. B 66 (1996) 87–122. doi:10.1006/jctb.1996.0008
[2] I. Fabrici, J. Harant and S. Jendrol’, On longest cycles in essentially 4 -connected planar graphs, Discuss. Math. Graph Theory 36 (2016) 565–575. doi:10.7151/dmgt.1875
[3] B. Grünbaum and J. Malkevitch, Pairs of edge-disjoint Hamilton circuits, Aequationes Math. 14 (1976) 191–196. doi:10.1007/BF01836218
[4] B. Jackson and N.C. Wormald, Longest cycles in 3 -connected planar graphs, J. Combin. Theory Ser. B 54 (1992) 291–321. doi:10.1016/0095-8956(92)90058-6
[5] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997) 341–345. doi:10.1002/(SICI)1097-0118(199704)24:4h341::AID-JGT6i3.0.CO;2-O
[6] A. Schmid and J.M. Schmidt, Computing Tutte paths (2017), arXiv-preprint. https://arxiv.org/abs/1707.05994
[7] C.-Q. Zhang, Longest cycles and their chords, J. Graph Theory 11 (1987) 521–529. doi:10.1002/jgt.3190110409