Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a15, author = {Zhao, Xue and Xu, Chang-Qing}, title = {Neighbor {Sum} {Distinguishing} {Total} {Chromatic} {Number} of {Planar} {Graphs} without {5-Cycles}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {243--253}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a15/} }
TY - JOUR AU - Zhao, Xue AU - Xu, Chang-Qing TI - Neighbor Sum Distinguishing Total Chromatic Number of Planar Graphs without 5-Cycles JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 243 EP - 253 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a15/ LA - en ID - DMGT_2020_40_1_a15 ER -
%0 Journal Article %A Zhao, Xue %A Xu, Chang-Qing %T Neighbor Sum Distinguishing Total Chromatic Number of Planar Graphs without 5-Cycles %J Discussiones Mathematicae. Graph Theory %D 2020 %P 243-253 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a15/ %G en %F DMGT_2020_40_1_a15
Zhao, Xue; Xu, Chang-Qing. Neighbor Sum Distinguishing Total Chromatic Number of Planar Graphs without 5-Cycles. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 243-253. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a15/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, NewYork-Amsterdam-Oxford, 1982).
[2] X. Cheng, D. Huang, G. Wang and J. Wu, Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ, Discrete Appl. Math. 190 – 191 (2015) 34–41. doi:10.1016/j.dam.2015.03.013
[3] A. Dong and G. Wang, Neighbor sum distinguising total colorings of graphs with bounded maximum average degree, Acta Math. Sin. (Engl. Ser.) 30 (2014) 703–709. doi:10.1007/s10114-014-2454-7
[4] L. Ding, G. Wang and G. Yan, Neighbor sum distinguising total colorings via the Combinatorial Nullstellensatz, Sci. China Math. 57 (2014) 1875–1882. doi:10.1007/s11425-014-4796-0
[5] S. Ge, J. Li and C. Xu, Neighbor sum distinguishing total chromatic number of planar graphs without 4 -cycles, Util. Math. 105 (2017) 259–265.
[6] S. Ge, J. Li and C. Xu, Neighbor sum distinguishing total coloring of planar graphs without 5 -cycles, Theoret. Comput. Sci. 689 (2017) 169–175. doi:10.1016/j.tcs.2017.05.037
[7] H. Li, L. Ding, B. Liu and G. Wang, Neighbor sum distinguishing total colorings of planar graphs, J. Comb. Optim. 30 (2015) 675–688. doi:10.1007/s10878-013-9660-6
[8] J. Li, S. Ge and C. Xu, Neighbor sum distinguishing total colorings of planar graphs with girth at least 5, Util. Math. 104 (2017) 115–121.
[9] H. Li, B. Liu and G. Wang, Neighbor sum distinguishing total colorings of K4-minor free graphs, Front. Math. China 8 (2013) 1351–1366. doi:10.1007/s11464-013-0322-x
[10] Q. Ma, J. Wang and H. Zhao, Neighbor sum distinguishing total colorings of planar graphs without short cycles, Util. Math. 98 (2015) 349–359.
[11] M. Pilśniak and M. Woźniak, On the total-neighbor-distinguishing index by sums, Graphs Combin. 31 (2015) 771–782. doi:10.1007/s00373-013-1399-4
[12] C. Qu, G. Wang, J. Wu and X. Yu, On the neighbor sum distinguishing total coloring of planar graphs, Theoret. Comput. Sci. 609 (2016) 162–170. doi:10.1016/j.tcs.2015.09.017
[13] C. Qu, G. Wang, G. Yan and X. Yu, Neighbor sum distinguishing total choosability of planar graphs, J. Comb. Optim. 32 (2016) 906–916. doi:10.1007/s10878-015-9911-9
[14] H. Song, W. Pan, X. Gong and C. Xu, A note on the neighbor sum distinguishing total coloring of planar graphs, Theoret. Comput. Sci. 640 (2016) 125–129. doi:10.1016/j.tcs.2016.06.007
[15] H. Song and C. Xu, Neighbor sum distinguishing total chromatic number of K4-minor free graph, Front. Math. China 12 (2017) 937–947. doi:10.1007/s11464-017-0649-9
[16] H. Song and C. Xu, Neighbor sum distinguishing total coloring of planar graphs without 4 -cycles, J. Comb. Optim. 34 (2017) 1147–1158. doi:10.1007/s10878-017-0137-x
[17] J. Wang, J. Cai and Q. Ma, Neighbor sum distinguishing total choosability of planar graphs without 4 -cycles, Discrete Appl. Math. 206 (2016) 215–219. doi:10.1016/j.dam.2016.02.003
[18] J. Wang, J. Cai and B. Qiu, Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles, Theoret. Comput. Sci. 661 (2017) 1–7. doi:10.1016/j.tcs.2016.11.003
[19] J. Wang, Q. Ma and X. Han, Neighbor sum distinguishing total colorings of triangle free planar graphs, Acta Math. Sin. (Engl. Ser.) 31 (2015) 216–224. doi:10.1007/s10114-015-4114-y
[20] D. Yang, X. Yu, L. Sun, J. Wu and S. Zhou, Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10, Appl. Math. Comput. 314 (2017) 456–468. doi:10.1016/j.amc.2017.06.002
[21] J. Yao, X. Yu, G. Wang and C. Xu, Neighbor sum distinguishing total coloring of 2 -degenerate graphs, J. Comb. Optim. 34 (2017) 64–70. doi:10.1007/s10878-016-0053-5
[22] J. Yao, X. Yu, G. Wang and C. Xu, Neighbor sum ( set ) distinguishing total choosability of d-degenerate graphs, Graphs Combin. 32 (2016) 1611–1620. doi:10.1007/s00373-015-1646-y