More on the Minimum Size of Graphs with Given Rainbow Index
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 227-241

Voir la notice de l'article provenant de la source Library of Science

The concept of k-rainbow index rxk(G) of a connected graph G, introduced by Chartrand et al., is a natural generalization of the rainbow connection number of a graph. Liu introduced a parameter t(n, k, ℓ) to investigate the problems of the minimum size of a connected graph with given order and k-rainbow index at most ℓ and obtained some exact values and upper bounds for t(n, k, ℓ). In this paper, we obtain some exact values of t(n, k, ℓ) for large ℓ and better upper bounds of t(n, k, ℓ) for small ℓ and k = 3.
Keywords: Steiner distance, rainbow S -tree, k -rainbow index
@article{DMGT_2020_40_1_a14,
     author = {Zhao, Yan},
     title = {More on the {Minimum} {Size} of {Graphs} with {Given} {Rainbow} {Index}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {227--241},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/}
}
TY  - JOUR
AU  - Zhao, Yan
TI  - More on the Minimum Size of Graphs with Given Rainbow Index
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 227
EP  - 241
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/
LA  - en
ID  - DMGT_2020_40_1_a14
ER  - 
%0 Journal Article
%A Zhao, Yan
%T More on the Minimum Size of Graphs with Given Rainbow Index
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 227-241
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/
%G en
%F DMGT_2020_40_1_a14
Zhao, Yan. More on the Minimum Size of Graphs with Given Rainbow Index. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 227-241. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/