More on the Minimum Size of Graphs with Given Rainbow Index
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 227-241.

Voir la notice de l'article provenant de la source Library of Science

The concept of k-rainbow index rxk(G) of a connected graph G, introduced by Chartrand et al., is a natural generalization of the rainbow connection number of a graph. Liu introduced a parameter t(n, k, ℓ) to investigate the problems of the minimum size of a connected graph with given order and k-rainbow index at most ℓ and obtained some exact values and upper bounds for t(n, k, ℓ). In this paper, we obtain some exact values of t(n, k, ℓ) for large ℓ and better upper bounds of t(n, k, ℓ) for small ℓ and k = 3.
Keywords: Steiner distance, rainbow S -tree, k -rainbow index
@article{DMGT_2020_40_1_a14,
     author = {Zhao, Yan},
     title = {More on the {Minimum} {Size} of {Graphs} with {Given} {Rainbow} {Index}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {227--241},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/}
}
TY  - JOUR
AU  - Zhao, Yan
TI  - More on the Minimum Size of Graphs with Given Rainbow Index
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 227
EP  - 241
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/
LA  - en
ID  - DMGT_2020_40_1_a14
ER  - 
%0 Journal Article
%A Zhao, Yan
%T More on the Minimum Size of Graphs with Given Rainbow Index
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 227-241
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/
%G en
%F DMGT_2020_40_1_a14
Zhao, Yan. More on the Minimum Size of Graphs with Given Rainbow Index. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 227-241. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).

[2] G. Chartrand, G. Johns, K. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.

[3] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360–367. doi:10.1002/net.20339

[4] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #R57.

[5] G. Chartrand, G.L. Johns, K. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75–81. doi:10.1002/net.20296

[6] L. Chen, X. Li, K. Yang and Y. Zhao, The 3 -rainbow index of a graph, Discuss. Math. Graph Theory 35 (2015) 81–94. doi:10.7151/dmgt.1780

[7] H. Li, X. Li, Y. Sun and Y. Zhao, Note on minimally d-rainbow connected graphs, Graphs Combin. 30 (2014) 949–955. doi:10.1007/s00373-013-1309-9

[8] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2

[9] T.Y.H. Liu, The minimum size of graphs with given rainbow index, Util. Math., in press.

[10] A. Lo, A note on the minimum size of k-rainbow connected graphs, Discrete Math. 331 (2014) 20–21. doi:10.1016/j.disc.2014.04.024

[11] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161 (2013) 702–705. doi:10.1016/j.dam.2011.05.001