Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a14, author = {Zhao, Yan}, title = {More on the {Minimum} {Size} of {Graphs} with {Given} {Rainbow} {Index}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {227--241}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/} }
Zhao, Yan. More on the Minimum Size of Graphs with Given Rainbow Index. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 227-241. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a14/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).
[2] G. Chartrand, G. Johns, K. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
[3] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360–367. doi:10.1002/net.20339
[4] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #R57.
[5] G. Chartrand, G.L. Johns, K. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75–81. doi:10.1002/net.20296
[6] L. Chen, X. Li, K. Yang and Y. Zhao, The 3 -rainbow index of a graph, Discuss. Math. Graph Theory 35 (2015) 81–94. doi:10.7151/dmgt.1780
[7] H. Li, X. Li, Y. Sun and Y. Zhao, Note on minimally d-rainbow connected graphs, Graphs Combin. 30 (2014) 949–955. doi:10.1007/s00373-013-1309-9
[8] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2
[9] T.Y.H. Liu, The minimum size of graphs with given rainbow index, Util. Math., in press.
[10] A. Lo, A note on the minimum size of k-rainbow connected graphs, Discrete Math. 331 (2014) 20–21. doi:10.1016/j.disc.2014.04.024
[11] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161 (2013) 702–705. doi:10.1016/j.dam.2011.05.001