Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a13, author = {Amos, David and Asplund, John and Brimkov, Boris and Davila, Randy}, title = {The {Slater} and {Sub-k-Domination} {Number} of a {Graph} with {Applications} to {Domination} and {k-Domination}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {209--225}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a13/} }
TY - JOUR AU - Amos, David AU - Asplund, John AU - Brimkov, Boris AU - Davila, Randy TI - The Slater and Sub-k-Domination Number of a Graph with Applications to Domination and k-Domination JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 209 EP - 225 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a13/ LA - en ID - DMGT_2020_40_1_a13 ER -
%0 Journal Article %A Amos, David %A Asplund, John %A Brimkov, Boris %A Davila, Randy %T The Slater and Sub-k-Domination Number of a Graph with Applications to Domination and k-Domination %J Discussiones Mathematicae. Graph Theory %D 2020 %P 209-225 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a13/ %G en %F DMGT_2020_40_1_a13
Amos, David; Asplund, John; Brimkov, Boris; Davila, Randy. The Slater and Sub-k-Domination Number of a Graph with Applications to Domination and k-Domination. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 209-225. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a13/
[1] Y. Caro and R. Pepper, Degree sequence index strategy, Australas. J. Combin. 59 (2014) 1–23.
[2] Y. Caro and Y. Roditty, A note on the k-domination number of a graph, Int. J. Math. Math. Sci. 13 (1990) 205–206. doi:10.1155/S016117129000031X
[3] E. DeLaViña, C.E. Larson, R. Pepper and B. Waller, Graffiti.pc on the 2 -domination number of a graph, Congr. Numer. 203 (2010) 15–32.
[4] W.J. Desormeaux, T.W. Haynes and M.A. Henning, Improved bounds on the domination number of a tree, Discrete Appl. Math. 177 (2014) 88–94. doi:10.1016/j.dam.2014.05.037
[5] M. Dorfling, W.D. Goddard and M.A. Henning, Domination in planar graphs with small diameter II, Ars Combin. 78 (2006) 237–255.
[6] Z. Du and A. Ilić, A proof of the conjecture regarding the sum of domination number and average eccentricity, Discrete Appl. Math. 201 (2016) 105–113. doi:10.1016/j.dam.2015.08.002
[7] O. Favaron, M. Mahěo and J.F. Saclě, On the residue of a graph, J. Graph Theory 15 (1991) 39–64. doi:10.1002/jgt.3190150107
[8] O. Favaron, A. Hansberg and L. Volkmann, On the k-domination and minimum degree in graphs, J. Graph Theory 57 (2008) 33–40. doi:10.1002/jgt.20279
[9] J.F. Fink and M.S. Jacobson, n-domination in graphs, Graph Theory with Applications to Algorithms and Computer Science (Kalamazoo, Mich., 1987) 283–300.
[10] M. Gentner and D. Rautenbach, Some comments on the Slater number, (2016). preprint arXiv:1608.04560v1
[11] R. Glebov, A. Liebenau and T. Szabó, On the concentration of the domination number of the random graph, SIAM J. Discrete Math. 29 (2015) 1186–1206. doi:10.1137/12090054X
[12] A. Hansberg, Bounds on the connected k-domination number in graphs, Discrete Appl. Math. 158 (2010) 1506–1510. doi:10.1016/j.dam.2010.05.021
[13] A. Hansberg and R. Pepper, On k-domination and j-independence in graphs, Discrete Appl. Math. 161 (2013) 1472–1480. doi:10.1016/j.dam.2013.02.008
[14] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Decker, New York, 1998).
[15] T. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Decker, New York, 1998).
[16] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013). doi:10.1007/978-1-4614-6525-6
[17] M.S. Jacobson and K. Peters, Complexity questions for n-domination and related parameters, Congr. Numer. 68 (1989) 7–22.
[18] A.P. Kazemi, On the total k-domination number of graphs, Discuss. Math. Graph Theory 32 (2012) 419–26. doi:10.7151/dmgt.1616
[19] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24 (2004) 165–169. doi:10.7151/dmgt.1222
[20] R. Pepper, Binding Independence, PhD Thesis (University of Houston 2004).
[21] R. Pepper, Implications of some observations about the k-domination number, Congr. Numer. 206 (2010) 65–71.
[22] D. Rautenbach and L. Volkmar, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007) 98–102. doi:10.1016/j.aml.2006.03.006
[23] P.J. Slater, Locating dominating sets and locating-dominating sets, in: Graph Theory, Combinatorics, and Applications, Proceedings of the 7th Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 1073–1079.
[24] D. Stevanović, M. Aouchiche and P. Hansen, On the spectral radius of graphs with a given domination number, Linear Algebra Appl. 428 (2008) 1854–1864. doi:10.1016/j.laa.2007.10.024