Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a12, author = {Li, Xihe and Wang, Ligong}, title = {Deficiency and {Forbidden} {Subgraphs} of {Connected,} {Locally-Connected} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {195--208}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a12/} }
TY - JOUR AU - Li, Xihe AU - Wang, Ligong TI - Deficiency and Forbidden Subgraphs of Connected, Locally-Connected Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 195 EP - 208 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a12/ LA - en ID - DMGT_2020_40_1_a12 ER -
Li, Xihe; Wang, Ligong. Deficiency and Forbidden Subgraphs of Connected, Locally-Connected Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 195-208. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a12/
[1] A. Adamaszek, M. Adamaszek, M. Mnich and J.M. Schmidt, Lower bounds for locally highly connected graphs, Graphs Combin. 32 (2016) 1641–1650. doi:10.1007/s00373-016-1686-y
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, Elsevier, New York, 1976).
[3] C. Brause, D. Rautenbach and I. Schiermeyer, Local connectivity, local degree conditions, some forbidden induced subgraphs, and cycle extendability, Discrete Math. 340 (2017) 596–606. doi:10.1016/j.disc.2016.11.035
[4] G. Chartrand and R.E. Pippert, Locally connected graphs, Časopis Pěst. Mat. 99 (1974) 158–163.
[5] X.D. Chen, M.C. Li, W. Liao and H. Broersma, Hamiltonian properties of almost locally connected claw-free graphs, Ars Combin. 124 (2016) 95–109.
[6] R. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs — A survey, Discrete Math. 164 (1997) 87–147. doi:10.1016/S0012-365X(96)00045-3
[7] M. Jünger, G. Reinelt and W.R. Pulleyblank, On partitioning the edges of graphs into connected subgraphs, J. Graph Theory 9 (1985) 539–549. doi:10.1002/jgt.3190090416
[8] M. Las Vergnas, A note on matchings in graphs, Colloque sur la Théorie des Graphes, Cahiers CentreÉtudes Rech. Opér. 17 (1975) 257–260.
[9] D.J. Oberly and D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is Hamiltonian, J. Graph Theory 3 (1979) 351–356. doi:10.1002/jgt.3190030405
[10] M.D. Plummer and A. Saito, Forbidden subgraphs and bounds on the size of a maximum matching, J. Graph Theory 50 (2005) 1–12. doi:10.1002/jgt.20087
[11] X.Y. Qu and H.Y. Lin, Quasilocally connected, almost locally connected or triangularly connected claw-free graphs, Lect. Notes Comput. Sci. 4381 (2007) 162–165. doi:10.1007/978-3-540-70666-3_17
[12] A. Saito and L.M. Xiong, The Ryjáček closure and a forbidden subgraph, Discuss. Math. Graph Theory 36 (2016) 621–628. doi:10.7151/dmgt.1876
[13] D.P. Sumner, 1 -factors and antifactor sets, J. Lond. Math. Soc. 2 ( 13 ) (1976) 351–359. doi:10.1112/jlms/s2-13.2.351