Deficiency and Forbidden Subgraphs of Connected, Locally-Connected Graphs
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 195-208.

Voir la notice de l'article provenant de la source Library of Science

A graph G is locally-connected if the neighbourhood N_G (v) induces a connected subgraph for each vertex v in G. For a graph G, the deficiency of G is the number of vertices unsaturated by a maximum matching, denoted by def (G). In fact, the deficiency of a graph measures how far a maximum matching is from being perfect matching. Saito and Xiong have studied subgraphs, the absence of which forces a connected and locally-connected graph G of sufficiently large order to satisfy def (G) ≤ 1. In this paper, we extend this result to the condition of def (G) ≤ k, where k is a positive integer. Let β_0 = 1/2 (3+√(8k+17) ) −1, we show that K_1,2, K_1,3, . . ., K_1,β_0, K_3 or K_2 2K_1 is the required forbidden subgraph. Furthermore, we obtain some similar results about 3-connected, locally-connected graphs. Key Words: deficiency, locally-connected graph, matching, forbidden subgraph.
Keywords: 05C40, 05C70
@article{DMGT_2020_40_1_a12,
     author = {Li, Xihe and Wang, Ligong},
     title = {Deficiency and {Forbidden} {Subgraphs} of {Connected,} {Locally-Connected} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {195--208},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a12/}
}
TY  - JOUR
AU  - Li, Xihe
AU  - Wang, Ligong
TI  - Deficiency and Forbidden Subgraphs of Connected, Locally-Connected Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 195
EP  - 208
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a12/
LA  - en
ID  - DMGT_2020_40_1_a12
ER  - 
%0 Journal Article
%A Li, Xihe
%A Wang, Ligong
%T Deficiency and Forbidden Subgraphs of Connected, Locally-Connected Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 195-208
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a12/
%G en
%F DMGT_2020_40_1_a12
Li, Xihe; Wang, Ligong. Deficiency and Forbidden Subgraphs of Connected, Locally-Connected Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 195-208. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a12/

[1] A. Adamaszek, M. Adamaszek, M. Mnich and J.M. Schmidt, Lower bounds for locally highly connected graphs, Graphs Combin. 32 (2016) 1641–1650. doi:10.1007/s00373-016-1686-y

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, Elsevier, New York, 1976).

[3] C. Brause, D. Rautenbach and I. Schiermeyer, Local connectivity, local degree conditions, some forbidden induced subgraphs, and cycle extendability, Discrete Math. 340 (2017) 596–606. doi:10.1016/j.disc.2016.11.035

[4] G. Chartrand and R.E. Pippert, Locally connected graphs, Časopis Pěst. Mat. 99 (1974) 158–163.

[5] X.D. Chen, M.C. Li, W. Liao and H. Broersma, Hamiltonian properties of almost locally connected claw-free graphs, Ars Combin. 124 (2016) 95–109.

[6] R. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs — A survey, Discrete Math. 164 (1997) 87–147. doi:10.1016/S0012-365X(96)00045-3

[7] M. Jünger, G. Reinelt and W.R. Pulleyblank, On partitioning the edges of graphs into connected subgraphs, J. Graph Theory 9 (1985) 539–549. doi:10.1002/jgt.3190090416

[8] M. Las Vergnas, A note on matchings in graphs, Colloque sur la Théorie des Graphes, Cahiers CentreÉtudes Rech. Opér. 17 (1975) 257–260.

[9] D.J. Oberly and D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is Hamiltonian, J. Graph Theory 3 (1979) 351–356. doi:10.1002/jgt.3190030405

[10] M.D. Plummer and A. Saito, Forbidden subgraphs and bounds on the size of a maximum matching, J. Graph Theory 50 (2005) 1–12. doi:10.1002/jgt.20087

[11] X.Y. Qu and H.Y. Lin, Quasilocally connected, almost locally connected or triangularly connected claw-free graphs, Lect. Notes Comput. Sci. 4381 (2007) 162–165. doi:10.1007/978-3-540-70666-3_17

[12] A. Saito and L.M. Xiong, The Ryjáček closure and a forbidden subgraph, Discuss. Math. Graph Theory 36 (2016) 621–628. doi:10.7151/dmgt.1876

[13] D.P. Sumner, 1 -factors and antifactor sets, J. Lond. Math. Soc. 2 ( 13 ) (1976) 351–359. doi:10.1112/jlms/s2-13.2.351