Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a10, author = {Liu, Weijun and Liu, Minmin and Zhang, Pengli and Feng, Lihua}, title = {Spectral {Conditions} for {Graphs} to be {k-Hamiltonian} or {k-Path-Coverable}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {161--179}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a10/} }
TY - JOUR AU - Liu, Weijun AU - Liu, Minmin AU - Zhang, Pengli AU - Feng, Lihua TI - Spectral Conditions for Graphs to be k-Hamiltonian or k-Path-Coverable JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 161 EP - 179 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a10/ LA - en ID - DMGT_2020_40_1_a10 ER -
%0 Journal Article %A Liu, Weijun %A Liu, Minmin %A Zhang, Pengli %A Feng, Lihua %T Spectral Conditions for Graphs to be k-Hamiltonian or k-Path-Coverable %J Discussiones Mathematicae. Graph Theory %D 2020 %P 161-179 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a10/ %G en %F DMGT_2020_40_1_a10
Liu, Weijun; Liu, Minmin; Zhang, Pengli; Feng, Lihua. Spectral Conditions for Graphs to be k-Hamiltonian or k-Path-Coverable. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 161-179. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a10/
[1] D. Bauer, H.J. Broersma, J. van den Heuvel, N. Kahl, A. Nevo, E. Schmeichel, D.R. Woodall and M. Yatauro, Best monotone degree conditions for graph properties: a survey, Graphs Combin. 31 (2015) 1–22. doi:10.1007/s00373-014-1465-6
[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111–135. doi:10.1016/0012-365X(76)90078-9
[3] R.A. Brualdi and E.S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones, SIAM J. Alg. Discrete Meth. 7 (1986) 265–272. doi:10.1137/0607030
[4] L. Chen, J. Liu and Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter, Complexity 21 (2015) 224–238. doi:10.1002/cplx.21599
[5] V. Chvátal, On Hamiltons ideals, J. Combin. Theory Ser. B 12 (1972) 163–168. doi:10.1016/0095-8956(72)90020-2
[6] G. Chartrand, S. Kapoor and D. Lick, n-Hamiltonian graphs, J. Combin. Theory 9 (1970) 308–312. doi:10.1016/S0021-9800(70)80069-2
[7] L.H. Feng, P.L. Zhang, H. Liu, W. Liu, M. Liu and Y. Hu, Spectral conditions for some graphical properties, Linear Algebra Appl. 524 (2017) 182–198. doi:10.1016/j.laa.2017.03.006
[8] L.H. Feng, G. Yu and X.-D. Zhang, Spectral radius of graphs with given matching number, Linear Algebra Appl. 422 (2007) 133–138. doi:10.1016/j.laa.2006.09.014
[9] L.H. Feng, J. Cao, W. Liu, S. Ding and H. Liu, The spectral radius of edge chromatic critical graphs, Linear Algebra Appl. 492 (2016) 78–88. doi:10.1016/j.laa.2015.11.019
[10] L.H. Feng, P. Zhang and W. Liu, Spectral radius and k-connectedness of a graph, Monatsh. Math. 185 (2018) 651–661. doi:10.1007/s00605-017-1055-9
[11] L.H. Feng, X. Zhu and W. Liu, Wiener index, Harary index and graph properties, Discrete Appl. Math. 223 (2017) 72–83. doi:10.1016/j.dam.2017.01.028
[12] M. Fiedler and V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl. 432 (2010) 2170–2173. doi:10.1016/j.laa.2009.01.005
[13] P. Hansen and D. Stevanović, On bags and bugs, Discrete Appl. Math. 156 (2008) 986–997. doi:10.1016/j.dam.2007.05.044
[14] Y. Hong, J.L Shu and K. Fang, A sharp upper bound of the spectral radius of graphs, J. Combin. Theory Ser. B 81 (2001) 177–183. doi:10.1006/jctb.2000.1997
[15] B. Huo, X. Li and Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, European J. Combin. 32 (2011) 662–673. doi:10.1016/j.ejc.2011.02.011
[16] L. Lesniak, On n-Hamiltonian graphs, Discrete Math. 14 (1976) 165–169. doi:10.1016/0012-365X(76)90059-5
[17] B. Li and B. Ning, Spectral analogues of Erdős ’ and Moon-Moser ’ s theorems on Hamilton cycles, Linear Multilinear Algebra 64 (2016) 2252–2269. doi:10.1080/03081087.2016.1151854
[18] H. Li, Generalizations of Dirac ’ s theorem in Hamiltonian graph theory — A survey, Discrete Math. 313 (2013) 2034–2053. doi:10.1016/j.disc.2012.11.025
[19] J. Li and G. Steiner, Partitioning a graph into vertex-disjoint paths, Studia Sci. Math. Hungar. 42 (2005) 277–294. doi:10.1556/SScMath.42.2005.3.3
[20] S. Li and X. Li, On tricyclic graphs of a given diamater with minimal energy, Linear Algebra Appl. 430 (2009) 370–385. doi:10.1016/j.laa.2008.08.004
[21] S.C. Li and N. Li, On minimal energies of trees with given diameter, Electron. J. Linear Algebra 17 (2008) 414–425. doi:10.13001/1081-3810.1272
[22] X. Li, M. Wei, J. Li and Y. Shi, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 183–214.
[23] Y. Li, Y. Liu and X. Peng, Signless Laplacian spectral radius and Hamiltonicity of graphs with large minimum degree, Linear Multilinear Algebra (2017), in press. doi:10.1080/03081087.2017.1383346
[24] R. Liu, W.C. Shiu and J. Xue, Sufficient spectral conditions on Hamiltonian and traceable graphs, Linear Algebra Appl. 467 (2015) 254–266. doi:10.1016/j.laa.2014.11.017
[25] W. Liu, M. Liu and L. Feng, Spectral conditions for graphs to be β-deficient involving minimum degree, Linear Multilinear Algebra 66 (2018) 792–802. doi:10.1080/03081087.2017.1323845
[26] M. Lu, H. Liu and F. Tian, Spectral radius and Hamiltonian graphs, Linear Algebra Appl. 437 (2012) 1670–1674. doi:10.1016/j.laa.2012.05.021
[27] V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl. 432 (2010) 2243–2256. doi:10.1016/j.laa.2009.05.023
[28] V. Nikiforov, Spectral radius and Hamiltonicity of graphs with large minimum degree, Czechoslovak Math. J. 66 (141) (2016) 925–940. doi:10.1007/s10587-016-0301-y
[29] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002) 179–189. doi:10.1017/S0963548301004928
[30] B. Ning and J. Ge, Spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra 63 (2015) 1520–1530. doi:10.1080/03081087.2014.947984
[31] B. Ning and B. Li, Spectral radius and traceability of connected claw-free graphs, Filomat 30 (2016) 2445–2452. doi:10.2298/FIL1609445N
[32] D. Stevanović, M. Aouchiche and P. Hansen, On the spectral radius of graphs with a given domination number, Linear Algebra Appl. 428 (2008) 1854–1864. doi:10.1016/j.laa.2007.10.024
[33] D. Stevanović, Spectral Radius of Graphs (Academic Press, Amsterdam, 2015).
[34] G.H. Yu, L.H. Feng, A. Ilić and D. Stevanović, The signless Laplacian spectral radius of bounded degree graphs on surfaces, Appl. Anal. Discrete Math. 9 (2015) 332–346. doi:10.2298/AADM150722015Y
[35] G.D. Yu and Y.Z. Fan, Spectral conditions for a graph to be Hamilton-connected, Appl. Mechanics Materials 336-338 (2013) 2329–2334. doi:10.4028/www.scientific.net/AMM.336-338.2329
[36] M. Zhang and S.C. Li, Extremal Halin graphs with respect to the signless Laplacian spectra, Discrete Appl. Math. 213 (2016) 207–218. doi:10.1016/j.dam.2016.05.020
[37] M. Zhang and S.C. Li, Extremal cacti of given matching number with respect to the distance spectral radius, Appl. Math. Comput. 291 (2016) 89–97. doi:10.1016/j.amc.2016.06.031
[38] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl. 432 (2010) 566–570. doi:10.1016/j.laa.2009.09.004
[39] Q. Zhou and L. Wang, Some sufficient spectral conditions on Hamilton-connected and traceable graphs, Linear Multilinear Algebra 65 (2017) 224–234. doi:10.1080/03081087.2016.1182463
[40] Q.N. Zhou and L.G. Wang, Distance signless Laplacian spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra 65 (2017) 2316–2323. doi:10.1080/03081087.2016.1273314
[41] Q.N. Zhou, L.G. Wang and Y. Lu, Wiener-type invariants on graph properties, Filomat 32 (2018) 489–502. doi:10.2298/FIL1802489Z
[42] Q.N. Zhou, L.G. Wang and Y. Lu, Some sufficient conditions on k-connected graphs, Appl. Math. Comput. 325 (2018) 332–339. doi:10.1016/j.amc.2017.12.043