Spectral Conditions for Graphs to be k-Hamiltonian or k-Path-Coverable
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 161-179

Voir la notice de l'article provenant de la source Library of Science

A graph G is k-Hamiltonian if for all X ⊂ V (G) with |X| ≤ k, the subgraph induced by V (G) X is Hamiltonian. A graph G is k-path-coverable if V (G) can be covered by k or fewer vertex disjoint paths. In this paper, by making use of the vertex degree sequence and an appropriate closure concept (due to Bondy and Chvátal), we present sufficient spectral conditions of a connected graph with fixed minimum degree and large order to be k-Hamiltonian or k-path-coverable.
Keywords: spectral radius, minimum degree, k -Hamiltonian, k -path-coverable
@article{DMGT_2020_40_1_a10,
     author = {Liu, Weijun and Liu, Minmin and Zhang, Pengli and Feng, Lihua},
     title = {Spectral {Conditions} for {Graphs} to be {k-Hamiltonian} or {k-Path-Coverable}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {161--179},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a10/}
}
TY  - JOUR
AU  - Liu, Weijun
AU  - Liu, Minmin
AU  - Zhang, Pengli
AU  - Feng, Lihua
TI  - Spectral Conditions for Graphs to be k-Hamiltonian or k-Path-Coverable
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 161
EP  - 179
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a10/
LA  - en
ID  - DMGT_2020_40_1_a10
ER  - 
%0 Journal Article
%A Liu, Weijun
%A Liu, Minmin
%A Zhang, Pengli
%A Feng, Lihua
%T Spectral Conditions for Graphs to be k-Hamiltonian or k-Path-Coverable
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 161-179
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a10/
%G en
%F DMGT_2020_40_1_a10
Liu, Weijun; Liu, Minmin; Zhang, Pengli; Feng, Lihua. Spectral Conditions for Graphs to be k-Hamiltonian or k-Path-Coverable. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 161-179. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a10/