Bounds on the Locating-Total Domination Number in Trees
Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 25-34.

Voir la notice de l'article provenant de la source Library of Science

Given a graph G = (V, E) with no isolated vertex, a subset S of V is called a total dominating set of G if every vertex in V has a neighbor in S. A total dominating set S is called a locating-total dominating set if for each pair of distinct vertices u and v in V S, N(u) ∩ S ≠ N(v) ∩ S. The minimum cardinality of a locating-total dominating set of G is the locating-total domination number, denoted by γ_t^L(G). We show that, for a tree T of order n ≥ 3 and diameter d, d+1/2≤γ_t^L(T)≤n−d−1/2, and if T has l leaves, s support vertices and s_1 strong support vertices, then γ_t^L(T)≥max{n+l−s+1/2−s+s_1/4,2(n+1)+3(l−s)−s_1/5}. We also characterize the extremal trees achieving these bounds.
Keywords: tree, total dominating set, locating-total dominating set, locating-total domination number
@article{DMGT_2020_40_1_a1,
     author = {Wang, Kun and Ning, Wenjie and Lu, Mei},
     title = {Bounds on the {Locating-Total} {Domination} {Number} in {Trees}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {25--34},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a1/}
}
TY  - JOUR
AU  - Wang, Kun
AU  - Ning, Wenjie
AU  - Lu, Mei
TI  - Bounds on the Locating-Total Domination Number in Trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2020
SP  - 25
EP  - 34
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a1/
LA  - en
ID  - DMGT_2020_40_1_a1
ER  - 
%0 Journal Article
%A Wang, Kun
%A Ning, Wenjie
%A Lu, Mei
%T Bounds on the Locating-Total Domination Number in Trees
%J Discussiones Mathematicae. Graph Theory
%D 2020
%P 25-34
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a1/
%G en
%F DMGT_2020_40_1_a1
Wang, Kun; Ning, Wenjie; Lu, Mei. Bounds on the Locating-Total Domination Number in Trees. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a1/

[1] M. Blidia and W. Dali, A characterization of locating-total domination edge critical graphs, Discuss. Math. Graph Theory 31 (2011) 197–202. doi:10.7151/dmgt.1538

[2] M. Chellali, On locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (2008) 383–392. doi:10.7151/dmgt.1414

[3] M. Chellali and N. Jafari Rad, Locating-total domination critical graphs, Australas. J. Combin. 45 (2009) 227–234.

[4] X. Chen and M.Y. Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (2011) 769–773. doi:10.1016/j.dam.2010.12.025

[5] C.J. Colbourn, P.J. Slater and L.K. Stewart, Locating-dominating sets in series-parallel networks, Congr. Numer. 56 (1987) 135–162.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1998).

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, 1998).

[8] T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293–1300. doi:10.1016/j.dam.2006.01.002

[9] M.A. Henning and N. Jafari Rad, Locating-total domination in graphs, Discrete Appl. Math. 160 (2012) 1986–1993. doi:10.1016/j.dam.2012.04.004

[10] N. Jafari Rad and H. Rahbani, A note on the locating-total domination number in trees, Australas. J. Combin. 66 (2016) 420–424.

[11] W.J. Ning, M. Lu and J. Guo, Bounds on the differentiating-total domination number of a tree, Discrete Appl. Math. 200 (2016) 153–160. doi:10.1016/j.dam.2015.06.029