Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_1_a0, author = {Tamil Elakkiya, A. and Muthusamy, A.}, title = {Gregarious {Kite} {Factorization} of {Tensor} {Product} of {Complete} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {7--24}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a0/} }
TY - JOUR AU - Tamil Elakkiya, A. AU - Muthusamy, A. TI - Gregarious Kite Factorization of Tensor Product of Complete Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 7 EP - 24 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a0/ LA - en ID - DMGT_2020_40_1_a0 ER -
Tamil Elakkiya, A.; Muthusamy, A. Gregarious Kite Factorization of Tensor Product of Complete Graphs. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 1, pp. 7-24. http://geodesic.mathdoc.fr/item/DMGT_2020_40_1_a0/
[1] I. Anderson, Combinatorial Designs and Tournaments (Oxford University Press Inc., New York, 1997).
[2] R.J.R. Abel, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal latin squares ( MOLS ), chapter in The Handbook of Combinatorial Designs, Second Edition, C.J. Colbourn and J.H. Dinitz, Eds., Discrete Math. Appl. (Chapman & Hall/CRC Press, Boca Raton, New York, 2007) 160–163.
[3] J.C. Bermond and J. Schönheim, G-decompositions of Kn, where G has four vertices or less, Discrete Math. 19 (1977) 113–120. doi:10.1016/0012-365X(77)90027-9
[4] C.J. Colbourn, A.C.H. Ling and G. Quattrocchi, Embedding path designs into kite systems, Discrete Math. 297 (2005) 38–48. doi:10.1016/j.disc.2005.04.014
[5] C.M. Fu, Y.F. Hsu, S.W. Lo and W.C. Huang, Some gregarious kite decompositions of complete equipartite graphs, Discrete Math. 313 (2013) 726–732. doi:10.1016/j.disc.2012.10.017
[6] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of Kv and Kv − I into paths and kites, Discrete Math. 313 (2013) 2830–2834. doi:10.1016/j.disc.2013.08.023
[7] L. Gionfriddo and C.C. Lindner, Nesting kite and 4-cycle systems, Australas. J. Combin. 33 (2005) 247–254.
[8] R. Häggkvist, Decompositions of complete bipartite graphs, in: Surveys in Combinatorics, Lond. Math. Soc. Lecture Note Ser. 141 (1989) 115–147. doi:10.1017/CBO9781107359949.007
[9] S. Kucukcifci and C.C. Lindner, The metamorphosis of λ-fold block designs with block size four into λ-fold kite systems, J. Combin. Math. Combin. Comput. 40 (2002) 241–252.
[10] C.C. Lindner and C.A. Rodger, Design Theory (Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton, 2009).
[11] G. Lo Faro and A. Tripodi, The Doyen-Wilson theorem for kite systems, Discrete Math. 306 (2006) 2695–2701. doi:10.1016/j.disc.2006.03.074
[12] G. Ragusa, Complete simultaneous metamorphosis of λ-fold kite systems, J. Combin. Math. Combin. Comput. 73 (2010) 159–180.
[13] D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman’s schoolgirl problem, Combinatorics, Proc. Symp. Pure Math., Amer. Math. Soc. 19 (1971) 187–204. doi:10.1090/pspum/019/9959
[14] A. Tamil Elakkiya and A. Muthusamy, P3-factorization of triangulated Cartesian product of complete graphs, Discrete Math. Algorithms Appl. 7 (2015) ID:1450066. doi:10.1142/S1793830914500669
[15] A. Tamil Elakkiya and A. Muthusamy, Gregarious kite decomposition of tensor product of complete graphs, Electron. Notes Discrete Math. 53 (2016) 83–96. doi:10.1016/j.endm.2016.05.008
[16] A. Tamil Elakkiya and A. Muthusamy, P3-factorization of triangulated Cartesian product of complete graph of odd order, S. Arumugam et al. (Eds.), ICTCSDM 2016, Lecture Notes in Comput. Sci. 10398 (2017) 425–434. doi:10.1007/978-3-319-64419-6_54
[17] L. Wang, On the existence of resolvable (K3 + e) -group divisible designs, Graphs Combin. 26 (2010) 879–889. doi:10.1007/s00373-010-0954-5
[18] H. Wang and Y. Chang, Kite-group divisible designs of type g<sup>t<sup>u<sup>1<sup>, Graphs Combin. 22 (2006) 545–571. doi:10.1007/s00373-006-0681-0
[19] H. Wang and Y. Chang, (K<sub>3</sub> + e, λ)-group divisible designs of type g<sup>t<sup>u<sup>1<sup>, Ars Combin. 89 (2008) 63–88.