Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a9, author = {Jendro\v{l}, Stanislav and Keke\v{n}\'akov\'a, Lucia}, title = {Facial {Rainbow} {Coloring} of {Plane} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {889--897}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a9/} }
Jendroľ, Stanislav; Kekeňáková, Lucia. Facial Rainbow Coloring of Plane Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 889-897. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a9/
[1] O. Amini, L. Esperet and J. van den Heuvel, A unified approach to distance-two colouring of planar graphs, in: Proc. SODA 2009 273–282. doi:10.1137/1.9781611973068.31
[2] K. Appel and W. Haken, Every planar graph is four colorable, Part I : Discharging, Illinois J. Math. 21 (1977) 429–490.
[3] K. Appel and W. Haken, Every planar graph is four colorable, Part II : Reducibility, Illinois J. Math. 21 (1977) 491–567.
[4] J. Azarija, R. Erman, D. Kráľ, M. Krnc and L. Stacho, Cyclic colorings of plane graphs with independent faces, European J. Combin. 33 (2012) 294–301. doi:10.1016/j.ejc.2011.09.011
[5] O.V. Borodin, Solution of Ringel’s problems on vertex-face coloring of plane graphs and coloring of 1 -planar graphs, Met. Diskret. Anal. 41 (1984) 12–26.
[6] O.V. Borodin, Cyclic coloring of plane graphs, Discrete Math. 100 (1992) 281–289. doi:10.1016/0012-365X(92)90647-X
[7] O.V. Borodin, A new proof of the 6 color theorem, J. Graph Theory 19 (1995) 507–521. doi:10.1002/jgt.3190190406
[8] O.V. Borodin, Colorings of plane graphs: A survey, Discrete Math. 313 (2013) 517–539. doi:10.1016/j.disc.2012.11.011
[9] O.V. Borodin, D.P. Sanders and Y. Zhao, On cyclic colorings and their generalizations, Discrete Math. 203 (1999) 23–40. doi:10.1016/S0012-365X(99)00018-7
[10] J. Czap and S. Jendroľ, Facially-constrained colorings of plane graphs: A survey, Discrete Math. 340 (2017) 2691–2730. doi:10.1016/j.disc.2016.07.026
[11] Z. Dvořák, M. Hebdige, F. Hlásek and D. Kráľ, Cyclic coloring of plane graphs with maximum face size 16 and 17. arXiv:1603.06722v2[math.CO]
[12] Z. Dvořák, D. Kráľ and R. Škrekovski, Non-rainbow coloring of 3 -, 4 -, and 5 - connected plane graphs, J. Graph Theory 63 (2010) 129–145. doi:10.1002/jgt.20414
[13] H. Enomoto and M. Horňák, A general upper bound for the cyclic chromatic number of 3 -connected plane graphs, J. Graph Theory 62 (2009) 1–25. doi:10.1002/jgt.20383
[14] H. Enomoto, M. Horňák and S. Jendroľ, Cyclic chromatic number of 3 -connected plane graphs, SIAM J. Discrete Math. 14 (2001) 121–137. doi:10.1137/S0895480198346150
[15] F. Fujie-Okamoto, K. Kolasinski, J.W. Lin and P. Zhang, Vertex rainbow colorings of graphs, Discuss. Math. Graph Theory 32 (2012) 63–68. doi:10.7151/dmgt.1586
[16] J.L. Gross and T.W. Tucker, Topological Graph Theory (Dover Publications, 2001).
[17] F. Havet, J.-S. Sereni and R. Škrekovski, 3 -facial coloring of plane graphs, SIAM J. Discrete Math 22 (2008) 231–247. doi:10.1137/060664124
[18] M. Hebdige and D. Kráľ, Third case of the cyclic coloring conjecture. arxiv.org/pdf/1501.06624.pdf
[19] M. Horňák and S. Jendroľ, On a conjecture by Plummer and Toft, J. Graph Theory 30 (1999) 177–189. doi:10.1002/(SICI)1097-0118(199903)30:3<177::AID-JGT3>3.0.CO;2-K
[20] M. Horňák and J. Zlámalová, Another step towards proving a conjecture by Plummer and Toft, Discrete Math. 310 (2010) 442–452. doi:10.1016/j.disc.2009.03.016
[21] S. Jendroľ and L. Kekeňáková, Facial rainbow colorings of trees, Australas. J. Combin. 69 (2017) 358–367.
[22] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, New York, 1995).
[23] Z. Jin, Y. Sun and J. Tu, Rainbow total-coloring of complementary graphs and Erdős-Gallai type problem for the rainbow total connection number, Discuss. Math. Graph Theory 38 (2018) 1023–1036. doi:10.7151/dmgt.2056
[24] X. Li, Y. Shi and Y. Sun, Rainbow connection of a graph; a survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2
[25] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: W.T. Tutte (Ed.), Recent Progress in Combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics, May 1968) (Academic Press, 1969).
[26] M.D. Plummer and B. Toft, Cyclic coloration of 3 -polytopes, J. Graph Theory 11 (1987) 507–515. doi:10.1002/jgt.3190110407
[27] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117. doi:10.1007/BF02996313
[28] N. Robertson, D.P. Sanders, P.D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1999) 2–44. doi:10.1006/jctb.1997.1750
[29] D.P. Sanders and Y. Zhao, A new bound on the cyclic chromatic number, J. Combin. Theory Ser. B 83 (2001) 102–111. doi:10.1006/jctb.2001.2046
[30] D. West, Introduction to Graph Theory, Second Edition (Prentice Hall, Upper Saddle River, 2001).