Spectral Radius and Hamiltonicity of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 951-974

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study the Hamiltonicity of graphs with large minimum degree. Firstly, we present some conditions for a simple graph to be Hamilton-connected and traceable from every vertex in terms of the spectral radius of the graph or its complement, respectively. Secondly, we give the conditions for a nearly balanced bipartite graph to be traceable in terms of spectral radius, signless Laplacian spectral radius of the graph or its quasi-complement, respectively.
Keywords: spectral radius, singless Laplacian spectral radius, traceable, Hamiltonian-connected, traceable from every vertex, minimum degree
@article{DMGT_2019_39_4_a14,
     author = {Yu, Guidong and Fang, Yi and Fan, Yizheng and Cai, Gaixiang},
     title = {Spectral {Radius} and {Hamiltonicity} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {951--974},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/}
}
TY  - JOUR
AU  - Yu, Guidong
AU  - Fang, Yi
AU  - Fan, Yizheng
AU  - Cai, Gaixiang
TI  - Spectral Radius and Hamiltonicity of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 951
EP  - 974
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/
LA  - en
ID  - DMGT_2019_39_4_a14
ER  - 
%0 Journal Article
%A Yu, Guidong
%A Fang, Yi
%A Fan, Yizheng
%A Cai, Gaixiang
%T Spectral Radius and Hamiltonicity of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 951-974
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/
%G en
%F DMGT_2019_39_4_a14
Yu, Guidong; Fang, Yi; Fan, Yizheng; Cai, Gaixiang. Spectral Radius and Hamiltonicity of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 951-974. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/