Spectral Radius and Hamiltonicity of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 951-974.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study the Hamiltonicity of graphs with large minimum degree. Firstly, we present some conditions for a simple graph to be Hamilton-connected and traceable from every vertex in terms of the spectral radius of the graph or its complement, respectively. Secondly, we give the conditions for a nearly balanced bipartite graph to be traceable in terms of spectral radius, signless Laplacian spectral radius of the graph or its quasi-complement, respectively.
Keywords: spectral radius, singless Laplacian spectral radius, traceable, Hamiltonian-connected, traceable from every vertex, minimum degree
@article{DMGT_2019_39_4_a14,
     author = {Yu, Guidong and Fang, Yi and Fan, Yizheng and Cai, Gaixiang},
     title = {Spectral {Radius} and {Hamiltonicity} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {951--974},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/}
}
TY  - JOUR
AU  - Yu, Guidong
AU  - Fang, Yi
AU  - Fan, Yizheng
AU  - Cai, Gaixiang
TI  - Spectral Radius and Hamiltonicity of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 951
EP  - 974
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/
LA  - en
ID  - DMGT_2019_39_4_a14
ER  - 
%0 Journal Article
%A Yu, Guidong
%A Fang, Yi
%A Fan, Yizheng
%A Cai, Gaixiang
%T Spectral Radius and Hamiltonicity of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 951-974
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/
%G en
%F DMGT_2019_39_4_a14
Yu, Guidong; Fang, Yi; Fan, Yizheng; Cai, Gaixiang. Spectral Radius and Hamiltonicity of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 951-974. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/

[1] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111–135. doi:10.1016/0012-365X(76)90078-9

[2] J.A. Bondy and U.S. Murty, Graph Theory (Springer, New York, 2008).

[3] I. Tomescu, On Hamiltonian-connected regular graphs, J. Graph Theory 7 (1983) 429–436. doi:10.1002/jgt.3190070407

[4] B.L. Li and B. Ning, Spectral analogues of Erdős’ and Moon—Moser’s theorems on Hamilton cycles, Linear Multilinear Algebra 64 (2016) 2252–2269. doi:10.1080/03081087.2016.1151854

[5] B.L. Li and B. Ning, Spectral analogues of Moon—Moser’s theorem on Hamilton paths in bipartite graphs, Linear Algebra Appl. 515 (2017) 180–195. doi:10.1016/j.laa.2016.11.024 The 15,1(2018).

[6] A. Bhattacharya, S. Friedland and U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008) #R144.

[7] M. Fiedler and V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl. 432 (2010) 2170–2173. doi:10.1016/j.laa.2009.01.005

[8] L.H Feng and G.H Yu, On three conjectures involving the signless Laplacian spectral radius of graphs, Publ. Inst. Math. (Beograd) (N.S.) 85 (2009) 35–38. doi:10.2298/PIM0999035F

[9] M. Ferrara, M. Jacobson and J. Powell, Characterizing degree-sum maximal non- hamiltonian bipartite graphs, Discrete Math. 312 (2012) 459–461. doi:10.1016/j.disc.2011.08.029

[10] Y.Z. Fan and and G.D. Yu, Spectral condition for a graph to be Hamiltonian with respect to normalized Laplacian, (2012).

[11] Y. Hong, J. Shu and K. Fang, A sharp upper bound of the spectral radius of graphs, J. Combin. Theory Ser. B 81 (2001) 177–183. doi:10.1006/jctb.2000.1997

[12] M. Lu, H.Q. Liu and F. Tian, Spectral radius and Hamiltonion graphs, Linear Algebra Appl. 437 (2012) 1670–1674. doi:10.1016/j.laa.2012.05.021

[13] R. Li, Egienvalues, Laplacian eigenvalues and some Hamiltonian properties of graphs, Util. Math. 88 (2012) 247–257.

[14] R. Li, Spectral conditions for some stable properties of graphs, J. Combin. Math. Combin. Comput. 88 (2014) 199–205.

[15] R. Liu, W.C. Shiu and J. Xue, Sufficient spectral conditions on Hamiltonian and traceable graphs, Linear Algebra Appl. 467 (2015) 254–266. doi:10.1016/j.laa.2014.11.017

[16] B. Ning and J. Ge, Spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra 63 (2015) 1520–1530. doi:10.1080/03081087.2014.947984

[17] B. Ning and B. Li, Spectral radius and traceability of connected claw-free graphs, Filomat 30 (2016) 2445–2452. doi:10.2298/FIL1609445N

[18] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002) 179–189. doi:10.1017/S0963548301004928

[19] V. Nikiforov, Spectral radius and Hamiltonicity of graphs with large minimum degree, Czechoslovak Math. J. 66 (2016) 925–940. doi:10.1007/s10587-016-0301-y

[20] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55. doi:/10.2307/2308928

[21] G.D. Yu and Y.Z. Fan, Spectral conditions for a graph to be Hamilton-connected, Appl. Mechanics and Materials 336–338 (2013) 2329–2334. doi:10.4028/ www.scientific.net/AMM.336-338.2329

[22] G.D. Yu, M.-L. Ye, G.-X. Cai and J.-D. Cao, Signless Laplacian spectral conditions for Hamiltonicity of graphs, J. Appl. Math. 2014 (2014) ID 282053. doi:10.1155/2014/282053

[23] G.D. Yu, Spectral radius and Hamiltonicity of a graph, Math. Appl. 27 (2014) 588–595.

[24] G.D. Yu, R. Li and B.H. Xing, Spectral invariants and some stable properties of a graph, Ars Combin. 121 (2015) 33–46.

[25] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl. 432 (2010) 566–570. doi:10.1016/j.laa.2009.09.004