Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a14, author = {Yu, Guidong and Fang, Yi and Fan, Yizheng and Cai, Gaixiang}, title = {Spectral {Radius} and {Hamiltonicity} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {951--974}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/} }
TY - JOUR AU - Yu, Guidong AU - Fang, Yi AU - Fan, Yizheng AU - Cai, Gaixiang TI - Spectral Radius and Hamiltonicity of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 951 EP - 974 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/ LA - en ID - DMGT_2019_39_4_a14 ER -
Yu, Guidong; Fang, Yi; Fan, Yizheng; Cai, Gaixiang. Spectral Radius and Hamiltonicity of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 951-974. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/
[1] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111–135. doi:10.1016/0012-365X(76)90078-9
[2] J.A. Bondy and U.S. Murty, Graph Theory (Springer, New York, 2008).
[3] I. Tomescu, On Hamiltonian-connected regular graphs, J. Graph Theory 7 (1983) 429–436. doi:10.1002/jgt.3190070407
[4] B.L. Li and B. Ning, Spectral analogues of Erdős’ and Moon—Moser’s theorems on Hamilton cycles, Linear Multilinear Algebra 64 (2016) 2252–2269. doi:10.1080/03081087.2016.1151854
[5] B.L. Li and B. Ning, Spectral analogues of Moon—Moser’s theorem on Hamilton paths in bipartite graphs, Linear Algebra Appl. 515 (2017) 180–195. doi:10.1016/j.laa.2016.11.024 The 15,1(2018).
[6] A. Bhattacharya, S. Friedland and U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008) #R144.
[7] M. Fiedler and V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl. 432 (2010) 2170–2173. doi:10.1016/j.laa.2009.01.005
[8] L.H Feng and G.H Yu, On three conjectures involving the signless Laplacian spectral radius of graphs, Publ. Inst. Math. (Beograd) (N.S.) 85 (2009) 35–38. doi:10.2298/PIM0999035F
[9] M. Ferrara, M. Jacobson and J. Powell, Characterizing degree-sum maximal non- hamiltonian bipartite graphs, Discrete Math. 312 (2012) 459–461. doi:10.1016/j.disc.2011.08.029
[10] Y.Z. Fan and and G.D. Yu, Spectral condition for a graph to be Hamiltonian with respect to normalized Laplacian, (2012).
[11] Y. Hong, J. Shu and K. Fang, A sharp upper bound of the spectral radius of graphs, J. Combin. Theory Ser. B 81 (2001) 177–183. doi:10.1006/jctb.2000.1997
[12] M. Lu, H.Q. Liu and F. Tian, Spectral radius and Hamiltonion graphs, Linear Algebra Appl. 437 (2012) 1670–1674. doi:10.1016/j.laa.2012.05.021
[13] R. Li, Egienvalues, Laplacian eigenvalues and some Hamiltonian properties of graphs, Util. Math. 88 (2012) 247–257.
[14] R. Li, Spectral conditions for some stable properties of graphs, J. Combin. Math. Combin. Comput. 88 (2014) 199–205.
[15] R. Liu, W.C. Shiu and J. Xue, Sufficient spectral conditions on Hamiltonian and traceable graphs, Linear Algebra Appl. 467 (2015) 254–266. doi:10.1016/j.laa.2014.11.017
[16] B. Ning and J. Ge, Spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra 63 (2015) 1520–1530. doi:10.1080/03081087.2014.947984
[17] B. Ning and B. Li, Spectral radius and traceability of connected claw-free graphs, Filomat 30 (2016) 2445–2452. doi:10.2298/FIL1609445N
[18] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002) 179–189. doi:10.1017/S0963548301004928
[19] V. Nikiforov, Spectral radius and Hamiltonicity of graphs with large minimum degree, Czechoslovak Math. J. 66 (2016) 925–940. doi:10.1007/s10587-016-0301-y
[20] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55. doi:/10.2307/2308928
[21] G.D. Yu and Y.Z. Fan, Spectral conditions for a graph to be Hamilton-connected, Appl. Mechanics and Materials 336–338 (2013) 2329–2334. doi:10.4028/ www.scientific.net/AMM.336-338.2329
[22] G.D. Yu, M.-L. Ye, G.-X. Cai and J.-D. Cao, Signless Laplacian spectral conditions for Hamiltonicity of graphs, J. Appl. Math. 2014 (2014) ID 282053. doi:10.1155/2014/282053
[23] G.D. Yu, Spectral radius and Hamiltonicity of a graph, Math. Appl. 27 (2014) 588–595.
[24] G.D. Yu, R. Li and B.H. Xing, Spectral invariants and some stable properties of a graph, Ars Combin. 121 (2015) 33–46.
[25] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl. 432 (2010) 566–570. doi:10.1016/j.laa.2009.09.004