Spectral Radius and Hamiltonicity of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 951-974
Voir la notice de l'article provenant de la source Library of Science
In this paper, we study the Hamiltonicity of graphs with large minimum degree. Firstly, we present some conditions for a simple graph to be Hamilton-connected and traceable from every vertex in terms of the spectral radius of the graph or its complement, respectively. Secondly, we give the conditions for a nearly balanced bipartite graph to be traceable in terms of spectral radius, signless Laplacian spectral radius of the graph or its quasi-complement, respectively.
Keywords:
spectral radius, singless Laplacian spectral radius, traceable, Hamiltonian-connected, traceable from every vertex, minimum degree
@article{DMGT_2019_39_4_a14,
author = {Yu, Guidong and Fang, Yi and Fan, Yizheng and Cai, Gaixiang},
title = {Spectral {Radius} and {Hamiltonicity} of {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {951--974},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/}
}
TY - JOUR AU - Yu, Guidong AU - Fang, Yi AU - Fan, Yizheng AU - Cai, Gaixiang TI - Spectral Radius and Hamiltonicity of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 951 EP - 974 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/ LA - en ID - DMGT_2019_39_4_a14 ER -
Yu, Guidong; Fang, Yi; Fan, Yizheng; Cai, Gaixiang. Spectral Radius and Hamiltonicity of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 951-974. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a14/