Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a13, author = {Xu, Xiaodong and Liang, Meilian and Radziszowski, Stanis{\l}aw}, title = {A {Note} on {Upper} {Bounds} for {Some} {Generalized} {Folkman} {Numbers}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {939--950}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a13/} }
TY - JOUR AU - Xu, Xiaodong AU - Liang, Meilian AU - Radziszowski, Stanisław TI - A Note on Upper Bounds for Some Generalized Folkman Numbers JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 939 EP - 950 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a13/ LA - en ID - DMGT_2019_39_4_a13 ER -
%0 Journal Article %A Xu, Xiaodong %A Liang, Meilian %A Radziszowski, Stanisław %T A Note on Upper Bounds for Some Generalized Folkman Numbers %J Discussiones Mathematicae. Graph Theory %D 2019 %P 939-950 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a13/ %G en %F DMGT_2019_39_4_a13
Xu, Xiaodong; Liang, Meilian; Radziszowski, Stanisław. A Note on Upper Bounds for Some Generalized Folkman Numbers. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 939-950. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a13/
[1] A. Bikov and N. Nenov, The edge Folkman number Fe (3, 3; 4) is greater than 19, Geombinatorics XXVII (2017) 5–14.
[2] A. Dudek, T. Retter and V. Rödl, On generalized Ramsey numbers of Erdős and Rogers, J. Combin. Theory Ser. B 109 (2014) 213–227. doi:10.1016/j.jctb.2014.06.006
[3] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970) 19–24. doi:10.1137/0118004
[4] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory (John Wiley & Sons, 1990).
[5] N. Kolev, A multiplicative inequality for vertex Folkman numbers, Discrete Math. 308 (2008) 4263–4266. doi:10.1016/j.disc.2007.08.008
[6] Y. Li and Q. Lin, On generalized Folkman numbers, Taiwanese J. Math. 21 (2017) 1–9. doi:10.11650/tjm.21.2017.7710
[7] Q. Lin and Y. Li, A Folkman linear family, SIAM J. Discrete Math. 29 (2015) 1988–1998. doi:10.1137/130947647
[8] N. Nenov, An example of a 15 -vertex (3, 3) -Ramsey graph with clique number 4, C.R. Acad. Bulgare Sci. 34 (1981) 1487–1489, in Russian.
[9] J. Nešetřil and V. Rödl, The Ramsey property for graphs with forbidden complete subgraphs, J. Combin. Theory Ser. B 20 (1976) 243–249. doi:10.1016/0095-8956(76)90015-0
[10] K. Piwakowski, S. Radziszowski and S. Urbański, Computation of the Folkman number Fe (3, 3; 5), J. Graph Theory 32 (1999) 41–49. doi:10.1002/(SICI)1097-0118(199909)32:1(41::AID-JGT4)3.0.CO;2-P
[11] V. Rödl, A. Ruciński and M. Schacht, An exponential-type upper bound for Folkman numbers, Combinatorica 30 (2017) 767–784. doi:10.1007/s00493-015-3298-1
[12] X. Xu, M. Liang and S. Radziszowski, Chromatic vertex Folkman numbers, (2018) preprint. arXiv 1612.08136
[13] X. Xu, M. Liang and S. Radziszowski, On the nonexistence of some generalized Folkman numbers, Graphs Combin., to appear. arXiv 1705.06268
[14] X. Xu, H. Luo and Z. Shao, Upper and lower bounds for Fv (4, 4; 5), Electron. J. Combin. (2010) 17 #N34.
[15] X. Xu and Z. Shao, On the lower bound for Fv ( k, k ; k + 1) and Fe (3, 4; 5), Util. Math. 81 (2010) 187–192.
[16] X. Xu, H. Luo, W. Su and K. Wu, On the upper bounds for vertex Folkman numbers, Guangxi Sci. 15 (2008) 211–215.