On the Independence Number of Traceable 2-Connected Claw-Free Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 925-937

Voir la notice de l'article provenant de la source Library of Science

A well-known theorem by Chvátal-Erdőos [A note on Hamilton circuits, Discrete Math. 2 (1972) 111–135] states that if the independence number of a graph G is at most its connectivity plus one, then G is traceable. In this article, we show that every 2-connected claw-free graph with independence number α(G) ≤ 6 is traceable or belongs to two exceptional families of well-defined graphs. As a corollary, we also show that every 2-connected claw-free graph with independence number α(G) ≤ 5 is traceable.
Keywords: traceability, independence number, matching number, trail, closure
@article{DMGT_2019_39_4_a12,
     author = {Wang, Shipeng and Xiong, Liming},
     title = {On the {Independence} {Number} of {Traceable} {2-Connected} {Claw-Free} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {925--937},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/}
}
TY  - JOUR
AU  - Wang, Shipeng
AU  - Xiong, Liming
TI  - On the Independence Number of Traceable 2-Connected Claw-Free Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 925
EP  - 937
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/
LA  - en
ID  - DMGT_2019_39_4_a12
ER  - 
%0 Journal Article
%A Wang, Shipeng
%A Xiong, Liming
%T On the Independence Number of Traceable 2-Connected Claw-Free Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 925-937
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/
%G en
%F DMGT_2019_39_4_a12
Wang, Shipeng; Xiong, Liming. On the Independence Number of Traceable 2-Connected Claw-Free Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 925-937. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/