Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a12, author = {Wang, Shipeng and Xiong, Liming}, title = {On the {Independence} {Number} of {Traceable} {2-Connected} {Claw-Free} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {925--937}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/} }
TY - JOUR AU - Wang, Shipeng AU - Xiong, Liming TI - On the Independence Number of Traceable 2-Connected Claw-Free Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 925 EP - 937 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/ LA - en ID - DMGT_2019_39_4_a12 ER -
Wang, Shipeng; Xiong, Liming. On the Independence Number of Traceable 2-Connected Claw-Free Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 925-937. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate in Mathematics (Springer, 2008).
[2] S. Brandt, O. Favaron and Z. Ryjáček, Closure and stable Hamiltonian properties in claw-free graphs, J. Graph Theory 34 (2000) 30–41. doi:10.1002/(SICI)1097-0118(200005)34:1(30::AID-JGT4)3.0.CO;2-R
[3] Z. Chen, Chvátal-Erdőos type conditions for Hamiltonicity of claw-free graphs, Graphs Combin. 32 (2016) 2253–2266. doi:10.1007/s00373-016-1716-9
[4] V. Chvátal and P. Erdős, A note on Hamilton circuits, Discrete Math. 2 (1972) 111–113. doi:10.1016/0012-365X(72)90079-9
[5] R. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs—A survey, Discrete Math. 164 (1997) 87–147. doi:10.1016/S0012-365X(96)00045-3
[6] E. Flandrin and H. Li, Further result on neighbourhood intersections, Report de Recheche, L.R.I. 416, Univ. Paris-Sud, Orsay (1989).
[7] F. Harary and C. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701–710. doi:10.4153/CMB-1965-051-3
[8] D. Li, H. Lai and M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005) 422–428. doi:10.1016/j.dam.2004.04.005
[9] Z. Niu, L. Xiong and S. Zhang, Smallest 2 -edge-connected graphs without a spanning trail, Util. Math. 88 (2012) 381–397.
[10] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224. doi:10.1006/jctb.1996.1732
[11] S. Wang and L. Xiong, Forbidden pairs for traceability of 2 -connected graphs, sub- mitted.
[12] J. Xu, P. Li, Z. Miao, K. Wang and H. Lai, Supereulerian graphs with small matching number and 2 -connected Hamiltonian claw-free graphs, Int. J. Comput. Math. 91 (2014) 1662–1672. doi:10.1080/00207160.2013.858808