On the Independence Number of Traceable 2-Connected Claw-Free Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 925-937.

Voir la notice de l'article provenant de la source Library of Science

A well-known theorem by Chvátal-Erdőos [A note on Hamilton circuits, Discrete Math. 2 (1972) 111–135] states that if the independence number of a graph G is at most its connectivity plus one, then G is traceable. In this article, we show that every 2-connected claw-free graph with independence number α(G) ≤ 6 is traceable or belongs to two exceptional families of well-defined graphs. As a corollary, we also show that every 2-connected claw-free graph with independence number α(G) ≤ 5 is traceable.
Keywords: traceability, independence number, matching number, trail, closure
@article{DMGT_2019_39_4_a12,
     author = {Wang, Shipeng and Xiong, Liming},
     title = {On the {Independence} {Number} of {Traceable} {2-Connected} {Claw-Free} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {925--937},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/}
}
TY  - JOUR
AU  - Wang, Shipeng
AU  - Xiong, Liming
TI  - On the Independence Number of Traceable 2-Connected Claw-Free Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 925
EP  - 937
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/
LA  - en
ID  - DMGT_2019_39_4_a12
ER  - 
%0 Journal Article
%A Wang, Shipeng
%A Xiong, Liming
%T On the Independence Number of Traceable 2-Connected Claw-Free Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 925-937
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/
%G en
%F DMGT_2019_39_4_a12
Wang, Shipeng; Xiong, Liming. On the Independence Number of Traceable 2-Connected Claw-Free Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 925-937. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a12/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate in Mathematics (Springer, 2008).

[2] S. Brandt, O. Favaron and Z. Ryjáček, Closure and stable Hamiltonian properties in claw-free graphs, J. Graph Theory 34 (2000) 30–41. doi:10.1002/(SICI)1097-0118(200005)34:1(30::AID-JGT4)3.0.CO;2-R

[3] Z. Chen, Chvátal-Erdőos type conditions for Hamiltonicity of claw-free graphs, Graphs Combin. 32 (2016) 2253–2266. doi:10.1007/s00373-016-1716-9

[4] V. Chvátal and P. Erdős, A note on Hamilton circuits, Discrete Math. 2 (1972) 111–113. doi:10.1016/0012-365X(72)90079-9

[5] R. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs—A survey, Discrete Math. 164 (1997) 87–147. doi:10.1016/S0012-365X(96)00045-3

[6] E. Flandrin and H. Li, Further result on neighbourhood intersections, Report de Recheche, L.R.I. 416, Univ. Paris-Sud, Orsay (1989).

[7] F. Harary and C. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701–710. doi:10.4153/CMB-1965-051-3

[8] D. Li, H. Lai and M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005) 422–428. doi:10.1016/j.dam.2004.04.005

[9] Z. Niu, L. Xiong and S. Zhang, Smallest 2 -edge-connected graphs without a spanning trail, Util. Math. 88 (2012) 381–397.

[10] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224. doi:10.1006/jctb.1996.1732

[11] S. Wang and L. Xiong, Forbidden pairs for traceability of 2 -connected graphs, sub- mitted.

[12] J. Xu, P. Li, Z. Miao, K. Wang and H. Lai, Supereulerian graphs with small matching number and 2 -connected Hamiltonian claw-free graphs, Int. J. Comput. Math. 91 (2014) 1662–1672. doi:10.1080/00207160.2013.858808