Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a11, author = {Jobson, Adam S. and K\'ezdy, Andr\'e. and Lehel, Jen\H{o} and M\'esz\'aros, G\'abor}, title = {The {Path-Pairability} {Number} of {Product} of {Stars}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {909--924}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a11/} }
TY - JOUR AU - Jobson, Adam S. AU - Kézdy, André. AU - Lehel, Jenő AU - Mészáros, Gábor TI - The Path-Pairability Number of Product of Stars JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 909 EP - 924 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a11/ LA - en ID - DMGT_2019_39_4_a11 ER -
%0 Journal Article %A Jobson, Adam S. %A Kézdy, André. %A Lehel, Jenő %A Mészáros, Gábor %T The Path-Pairability Number of Product of Stars %J Discussiones Mathematicae. Graph Theory %D 2019 %P 909-924 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a11/ %G en %F DMGT_2019_39_4_a11
Jobson, Adam S.; Kézdy, André.; Lehel, Jenő; Mészáros, Gábor. The Path-Pairability Number of Product of Stars. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 909-924. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a11/
[1] L. Csaba, R.J. Faudree, A. Gyárfás, J. Lehel and R.H. Schelp, Networks communicating for each pairing of terminals, Networks 22 (1992) 615–626. doi:10.1002/net.3230220702
[2] R.J. Faudree, A. Gyárfás and J. Lehel, Three-regular path pairable graphs, Graphs Combin. 8 (1992) 45–52. doi:10.1007/BF01271707
[3] R.J. Faudree, A. Gyárfás and J. Lehel, Path-pairable graphs, J. Combin. Math. Combin. Comput. 29 (1999) 145–157.
[4] E. Győri, T.R. Mezei and G. Mészáros, Note on terminal-pairability in complete grid graphs, Discrete Math. 5 (2017) 988–990. doi:10.1016/j.disc.2017.01.014
[5] A. Huck, A sufficient condition for graphs to be weakly k-linked, Graphs Combin. 7 (1991) 323–351. doi:10.1007/BF01787639
[6] A.S. Jobson, A.E. Kézdy and J. Lehel, The path-pairability of the products of paths (2016), submitted.
[7] E. Kubicka, G. Kubicki, and J. Lehel, Path-pairable property for complete grids, in: Combinatorics, Graph Theory and Algorithms II (1999) 577–586.
[8] G. Mészáros, Linkedness and Path–Pairability in the Cartesian Product of Graphs, PhD Thesis (CEU, Budapest, 2015).
[9] G. Mészáros, On path-pairability in the Cartesian product of graphs, Discuss. Math. Graph Theory 36 (2016) 743–758. doi:10.7151/dmgt.1888