Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_4_a0, author = {Jiang, Hui and Li, Xueliang and Zhang, Yingying}, title = {Erd\H{o}s-Gallai-Type {Results} for {Total} {Monochromatic} {Connection} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {775--785}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/} }
TY - JOUR AU - Jiang, Hui AU - Li, Xueliang AU - Zhang, Yingying TI - Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 775 EP - 785 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/ LA - en ID - DMGT_2019_39_4_a0 ER -
%0 Journal Article %A Jiang, Hui %A Li, Xueliang %A Zhang, Yingying %T Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs %J Discussiones Mathematicae. Graph Theory %D 2019 %P 775-785 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/ %G en %F DMGT_2019_39_4_a0
Jiang, Hui; Li, Xueliang; Zhang, Yingying. Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 775-785. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/
[1] J.A. Bondy, U.S.R. Murty, Graph Theory (Springer, 2008).
[2] Q. Cai, X. Li and D. Wu, Erdős-Gallai-type results for colorful monochromatic con- nectivity of a graph, J. Comb. Optim. 33 (2017) 123–131. doi:10.1007/s10878-015-9938-y
[3] Q. Cai, X. Li and D. Wu, Some extremal results on the colorful monochromatic vertex-connectivity of a graph . arXiv: 1503.08941v1.
[4] Y. Caro and R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311 (2011) 1786–1792. doi:10.1016/j.disc.2011.04.020
[5] G. Ding, T. Hohnson and P. Seymour, Spanning trees with many leaves, J. Graph Theory 37 (2001) 189–197. doi:10.1002/jgt.1013
[6] D. González-Moreno, M. Guevara and J.J. Montellano-Ballesteros, Monochromatic connecting colorings in strongly connected oriented graphs, Discrete Math. 340 (2017) 578–584. doi:10.1016/j.disc.2016.11.016
[7] R. Gu, X. Li, Z. Qin and Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40 (2017) 1769–1779. doi:10.1007/s40840-015-0274-2
[8] H. Jiang, X. Li and Y. Zhang, More on total monochromatic connection of graphs, Ars Combin. 136 (2018), to appear.
[9] H. Jiang, X. Li and Y. Zhang, Total monochromatic connection of graphs, Discrete Math. 340 (2017) 175–180. doi:10.1016/j.disc.2016.08.020
[10] H. Jiang, X. Li and Y. Zhang, Upper bounds for the total rainbow connection of graphs, J. Comb. Optim. 32 (2016) 260–266. doi:10.1007/s10878-015-9874-x
[11] H. Liu, Â . Mestre and T. Sousa, Total rainbow k-connection in graphs, Discrete Appl. Math. 174 (2014) 92–101. doi:10.1016/j.dam.2014.04.012
[12] Y. Sun, On rainbow total-coloring of a graph, Discrete Appl. Math. 194 (2015) 171–177. doi:10.1016/j.dam.2015.05.012