Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 775-785.

Voir la notice de l'article provenant de la source Library of Science

A graph is said to be total-colored if all the edges and the vertices of the graph are colored. A total-coloring of a graph is a total monochromatically-connecting coloring (TMC-coloring, for short) if any two vertices of the graph are connected by a path whose edges and internal vertices have the same color. For a connected graph G, the total monochromatic connection number, denoted by tmc(G), is defined as the maximum number of colors used in a TMC-coloring of G. In this paper, we study two kinds of Erdős-Gallai-type problems for tmc(G) and completely solve them.
Keywords: total-colored graph, total monochromatic connection, Erdős- Gallai-type problem
@article{DMGT_2019_39_4_a0,
     author = {Jiang, Hui and Li, Xueliang and Zhang, Yingying},
     title = {Erd\H{o}s-Gallai-Type {Results} for {Total} {Monochromatic} {Connection} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {775--785},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/}
}
TY  - JOUR
AU  - Jiang, Hui
AU  - Li, Xueliang
AU  - Zhang, Yingying
TI  - Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 775
EP  - 785
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/
LA  - en
ID  - DMGT_2019_39_4_a0
ER  - 
%0 Journal Article
%A Jiang, Hui
%A Li, Xueliang
%A Zhang, Yingying
%T Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 775-785
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/
%G en
%F DMGT_2019_39_4_a0
Jiang, Hui; Li, Xueliang; Zhang, Yingying. Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 775-785. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/

[1] J.A. Bondy, U.S.R. Murty, Graph Theory (Springer, 2008).

[2] Q. Cai, X. Li and D. Wu, Erdős-Gallai-type results for colorful monochromatic con- nectivity of a graph, J. Comb. Optim. 33 (2017) 123–131. doi:10.1007/s10878-015-9938-y

[3] Q. Cai, X. Li and D. Wu, Some extremal results on the colorful monochromatic vertex-connectivity of a graph . arXiv: 1503.08941v1.

[4] Y. Caro and R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311 (2011) 1786–1792. doi:10.1016/j.disc.2011.04.020

[5] G. Ding, T. Hohnson and P. Seymour, Spanning trees with many leaves, J. Graph Theory 37 (2001) 189–197. doi:10.1002/jgt.1013

[6] D. González-Moreno, M. Guevara and J.J. Montellano-Ballesteros, Monochromatic connecting colorings in strongly connected oriented graphs, Discrete Math. 340 (2017) 578–584. doi:10.1016/j.disc.2016.11.016

[7] R. Gu, X. Li, Z. Qin and Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40 (2017) 1769–1779. doi:10.1007/s40840-015-0274-2

[8] H. Jiang, X. Li and Y. Zhang, More on total monochromatic connection of graphs, Ars Combin. 136 (2018), to appear.

[9] H. Jiang, X. Li and Y. Zhang, Total monochromatic connection of graphs, Discrete Math. 340 (2017) 175–180. doi:10.1016/j.disc.2016.08.020

[10] H. Jiang, X. Li and Y. Zhang, Upper bounds for the total rainbow connection of graphs, J. Comb. Optim. 32 (2016) 260–266. doi:10.1007/s10878-015-9874-x

[11] H. Liu, Â . Mestre and T. Sousa, Total rainbow k-connection in graphs, Discrete Appl. Math. 174 (2014) 92–101. doi:10.1016/j.dam.2014.04.012

[12] Y. Sun, On rainbow total-coloring of a graph, Discrete Appl. Math. 194 (2015) 171–177. doi:10.1016/j.dam.2015.05.012