Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 775-785
Voir la notice de l'article provenant de la source Library of Science
A graph is said to be total-colored if all the edges and the vertices of the graph are colored. A total-coloring of a graph is a total monochromatically-connecting coloring (TMC-coloring, for short) if any two vertices of the graph are connected by a path whose edges and internal vertices have the same color. For a connected graph G, the total monochromatic connection number, denoted by tmc(G), is defined as the maximum number of colors used in a TMC-coloring of G. In this paper, we study two kinds of Erdős-Gallai-type problems for tmc(G) and completely solve them.
Keywords:
total-colored graph, total monochromatic connection, Erdős- Gallai-type problem
@article{DMGT_2019_39_4_a0,
author = {Jiang, Hui and Li, Xueliang and Zhang, Yingying},
title = {Erd\H{o}s-Gallai-Type {Results} for {Total} {Monochromatic} {Connection} of {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {775--785},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/}
}
TY - JOUR AU - Jiang, Hui AU - Li, Xueliang AU - Zhang, Yingying TI - Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 775 EP - 785 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/ LA - en ID - DMGT_2019_39_4_a0 ER -
%0 Journal Article %A Jiang, Hui %A Li, Xueliang %A Zhang, Yingying %T Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs %J Discussiones Mathematicae. Graph Theory %D 2019 %P 775-785 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/ %G en %F DMGT_2019_39_4_a0
Jiang, Hui; Li, Xueliang; Zhang, Yingying. Erdős-Gallai-Type Results for Total Monochromatic Connection of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 4, pp. 775-785. http://geodesic.mathdoc.fr/item/DMGT_2019_39_4_a0/