Graphs With Large Semipaired Domination Number
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 659-671

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph with vertex set V and no isolated vertices. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number γ_pr2(G) is the minimum cardinality of a semipaired dominating set of G. We show that if G is a connected graph G of order n ≥ 3, then γ_pr2 (G) ≤23 n, and we characterize the extremal graphs achieving equality in the bound.
Keywords: paired-domination, semipaired domination
@article{DMGT_2019_39_3_a4,
     author = {Haynes, Teresa W. and Henning, Michael A.},
     title = {Graphs {With} {Large} {Semipaired} {Domination} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {659--671},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a4/}
}
TY  - JOUR
AU  - Haynes, Teresa W.
AU  - Henning, Michael A.
TI  - Graphs With Large Semipaired Domination Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 659
EP  - 671
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a4/
LA  - en
ID  - DMGT_2019_39_3_a4
ER  - 
%0 Journal Article
%A Haynes, Teresa W.
%A Henning, Michael A.
%T Graphs With Large Semipaired Domination Number
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 659-671
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a4/
%G en
%F DMGT_2019_39_3_a4
Haynes, Teresa W.; Henning, Michael A. Graphs With Large Semipaired Domination Number. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 659-671. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a4/