Graphs With Large Semipaired Domination Number
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 659-671
Voir la notice de l'article provenant de la source Library of Science
Let G be a graph with vertex set V and no isolated vertices. A subset S ⊆ V is a semipaired dominating set of G if every vertex in V \ S is adjacent to a vertex in S and S can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number γ_pr2(G) is the minimum cardinality of a semipaired dominating set of G. We show that if G is a connected graph G of order n ≥ 3, then γ_pr2 (G) ≤23 n, and we characterize the extremal graphs achieving equality in the bound.
Keywords:
paired-domination, semipaired domination
@article{DMGT_2019_39_3_a4,
author = {Haynes, Teresa W. and Henning, Michael A.},
title = {Graphs {With} {Large} {Semipaired} {Domination} {Number}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {659--671},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a4/}
}
TY - JOUR AU - Haynes, Teresa W. AU - Henning, Michael A. TI - Graphs With Large Semipaired Domination Number JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 659 EP - 671 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a4/ LA - en ID - DMGT_2019_39_3_a4 ER -
Haynes, Teresa W.; Henning, Michael A. Graphs With Large Semipaired Domination Number. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 659-671. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a4/