Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_3_a2, author = {Gorgol, Izolda}, title = {A {Note} on {Lower} {Bounds} for {Induced} {Ramsey} {Numbers}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {647--654}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a2/} }
Gorgol, Izolda. A Note on Lower Bounds for Induced Ramsey Numbers. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 3, pp. 647-654. http://geodesic.mathdoc.fr/item/DMGT_2019_39_3_a2/
[1] J. Beck, On the size Ramsey number of paths, trees and circuits I, J. Graph Theory 7 (1983) 115–129. doi:10.1002/jgt.3190070115
[2] D. Conlon, J. Fox and B. Sudakov, On two problems in graph Ramsey theory, Combinatorica 32 (2012) 513–535. doi:10.1007/s00493-012-2710-3
[3] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs. III. Small off-diagonal numbers, Pacific J. Math. 41 (1972) 335–345. doi:10.2140/pjm.1972.41.335
[4] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977) 93. doi:10.1002/jgt.3190010118
[5] W. Deuber, A generalization of Ramsey’s theorem, in: Infinite and Finite Sets, R. Rado A. Hajnal and V. Sós, (Eds.) 10 (North-Holland, Amsterdam, 1975) 323–332.
[6] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947) 292–294 doi:10.1090/S0002-9904-1947-08785-1
[7] P. Erdős, On some problems in graph theory, combinatorial analysis and combinatorial number theory, in: Proc. Conf. Hon. P. Erdös, Cambridge 1983, Graph Theory and Combinatorics (Academic Press, New York, 1984) 1–17.
[8] P. Erdős, A. Hajnal and L. Pósa, Strong embeddings of graphs into colored graphs, in: Infinite and Finite Sets, R. Rado A. Hajnal and V. Sós, (Eds.) 10 (North-Holland, 1975) 585–595.
[9] I. Gorgol, A note on a triangle-free-complete graph induced Ramsey number, Discrete Math. 235 (2001) 159–163. doi:10.1016/S0012-365X(00)00269-7
[10] I. Gorgol and T. Luczak, On induced Ramsey numbers, Discrete Math. 251 (2002) 87–96. doi:10.1016/S0012-365X(01)00328-4
[11] F. Harary, J. Nešetřil and V. Rödl, Generalized Ramsey theory for graphs. XIV. Induced Ramsey numbers, in: Proceedings of the Third Czechoslovak Symposium on Graph Theory, Praque 1982, Graphs and Other Combinatorial Topics 59 (1983) 90–100.
[12] P. Haxell, Y. Kohayakawa and T. Luczak, The induced size-Ramsey number of cycles, Combin. Probab. Comput. 4 (1995) 217–239. doi:10.1017/S0963548300001619
[13] Y. Kohayakawa, H.J. Prömel and V. Rödl, Induced Ramsey numbers, Combinatorica 18 (1998) 373–404. doi:10.10071PL00009828
[14] A. Kostochka and N. Sheikh, On the induced Ramsey number IR ( P 3, H ), Topics in Discrete Mathematics 26 (2006) 155–167. doi:10.1007/3-540-33700-8_10
[15] T. Luczak and V. Rödl, On induced Ramsey numbers for graphs with bounded maximum degree, J. Combin. Theory Ser. B 66 (1996) 324–333. doi:10.1006/jctb.1996.0025
[16] V. Rödl, The Dimention of a Graph and Generalized Ramsey Theorems, Master’s Thesis (Charles University, Prague, 1973).
[17] V. Rödl, A generalization of Ramsey theorem, in: Proc. Symp. Comb. Anal., Zielona Góra 1976, Graphs, Hypergraphs and Block Systems (1976) 211–219.
[18] M. Schaefer and P. Shah, Induced graph Ramsey theory, Ars Combin. 66 (2003) 3–21.