Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a9, author = {Polat, Norbert}, title = {On {Some} {Characterizations} of {Antipodal} {Partial} {Cubes}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {439--453}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a9/} }
Polat, Norbert. On Some Characterizations of Antipodal Partial Cubes. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 439-453. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a9/
[1] H.-J. Bandelt and A.W.M. Dress, A canonical decomposition theory for metrics on a finite set, Adv. Math. 92 (1992) 47–105. doi:10.1016/0001-8708(92)90061-O
[2] V. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity, Cybernetics 24 (1988) 6–11. doi:10.1007/BF01069520
[3] V. Chepoi, K. Knauer and T. Marc, Partial cubes without Q3− minors, CoRR abs/1606.02154 (2016) (submitted).
[4] J. Desharnais, Maille et Plongements de Graphes Antipodaux, Mémoire de Maitrise (Université de Montréal, 1993).
[5] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263–267. doi:10.1016/0095-8956(73)90010-5
[6] D. Eppstein, The lattice dimension of a graph, European J. Combin. 26 (2005) 585–592. doi:10.1016/j.ejc.2004.05.001
[7] M. Faghani, E. Pourhadi and H. Kharazi, On the new extension of distance-balanced graphs, Trans. Comb. 5 (2016) 23–34.
[8] V.V. Firsov, Isometric embedding of a graph into a Boolean cube, Cybernetics 1 (1965) 112–113. doi:10.1007/BF01074705
[9] K. Fukuda and K. Handa, Antipodal graphs and oriented matroids, Discrete Math. 111 (1993) 245–256. doi:10.1016/0012-365X(93)90159-Q
[10] F. Glivjak, A. Kotzig and J. Plesník, Remarks on the graphs with a central symmetry, Monatsh. Math. 74 (1970) 302–307. doi:10.1007/BF01302697
[11] F. Göbel and H.J. Veldman, Even graphs, J. Graph Theory 10 (1986) 225–239. doi:10.1002/jgt.3190100212
[12] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, 2011).
[13] K. Handa, Bipartite graphs with balanced ( a, b ) -partitions, Ars Combin. 51 (1999) 113–119.
[14] A. Ilíc, S. Klavžar and M. Milanovíc, On distance-balanced graphs, European J. Combin. 31 (2010) 732–737. doi:10.1016/j.ejc.2009.10.006
[15] J. Jerebic, S. Klavžar and D.F. Rall, Distance-balanced graphs, Ann. Comb. 12 (2008) 71–79. doi:10.1007/s00026-008-0337-2
[16] S. Klavžar and M. Kovše, On even and harmonic-even partial cubes, Ars Combin. 93 (2009) 77–86.
[17] S. Klavžar and H.M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete Math. 15 (2002)) 235–251. doi:10.1137/S0895480101383202
[18] A. Kotzig, Centrally symmetric graphs, Czechoslovak Math. J. 93 (1968) 605–615.
[19] A. Kotzig and P. Laufer, Generalized S -Graphs, preprint CRM-779, Centre de recherches mathématiques (Université de Montréal, 1978).
[20] T. Marc, There are no finite partial cubes of girth more than 6 and minimum degree at least 3, European J. Combin. 55 (2016) 62–72. doi:10.1016/j.ejc.2016.01.005
[21] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197–204. doi:10.1016/0012-365X(78)90199-1
[22] H.M. Mulder, n-cubes and median graphs, J. Graph Theory 4 (1980) 107–110. doi:10.1002/jgt.3190040112
[23] S. Ovchinnikov, Partial cubes: structures, characterizations, and constructions, Discrete Math. 308 (2008) 5597–5621. doi:10.1016/j.disc.2007.10.025
[24] K.R. Parthasarathy and R. Nandakumar, Unique eccentric point graphs, Discrete Math. 46 (1983) 69–74. doi:10.1016/0012-365X(83)90271-6
[25] N. Polat, Netlike partial cubes I. General properties, Discrete Math. 307 (2007) 2704–2722. doi:10.1016/j.disc.2007.01.018
[26] N. Polat and G. Sabidussi, On the geodesic pre-hull number of a graph, European J. Combin. 30 (2009) 1205–1220. doi:10.1016/j.ejc.2008.09.022
[27] G. Sabidussi, Graphs without dead ends, European J. Combin. 17 (1996) 69–87. doi:10.1006/eujc.1996.0006
[28] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221–225. doi:10.1016/0166-218X(84)90069-6