Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a7, author = {\v{S}pacapan, Simon}, title = {On {3-Colorings} of {Direct} {Products} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {391--413}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a7/} }
Špacapan, Simon. On 3-Colorings of Direct Products of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 391-413. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a7/
[1] N. Alon, I. Dinur, E. Friedgut and B. Sudakov, Graph products, Fourier analysis and spectral techniques, Geom. Funct. Anal. 14 (2004) 913–940. doi:10.1007/s00039-004-0478-3
[2] M. El-Zahar and N. Sauer, The chromatic number of the product of two 4 -chromatic graphs is 4, Combinatorica 5 (1985) 121–126. doi:10.1007/BF02579374
[3] D. Greenwell and L. Lovász, Applications of product colouring, Acta Math. Acad. Sci. Hungar. 25 (1974) 335–340. doi:10.1007/BF01886093
[4] X.B. Geng, J. Wang and H. Zhang, Structure of independent sets in direct products of some vertex-transitive graphs, Acta Math. Sin. (Engl. Ser.) 28 (2012) 697–706. doi:10.1007/s10114-011-0311-5
[5] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).
[6] S.T. Hedetniemi, Homomorphisms and graph automata, University of Michigan Technical Report 03105–44–T (1966).
[7] P.K. Jha and S. Klavžar, Independence in direct-product graphs, Ars Combin. 50 (1998) 53–63.
[8] B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs, J. Graph Theory 40 (2002) 162–171. doi:10.1002/jgt.10041
[9] S. Špacapan, The k-independence number of direct products of graphs and Hedetniemi’s conjecture, European J. Combin 32 (2011) 1377–1383. doi:10.1016/j.ejc.2011.07.002
[10] C. Tardif, Hedetniemi’s conjecture 40 years later, Graph Theory Notes of New York LIV (2008) 46–57.
[11] C. Tardif, Hedetniemi’s conjecture and dense Boolean lattices, Order 28 (2011) 181–191. doi:10.1007/s11083-010-9162-4
[12] Á. Tóth, On the ultimate categorical independence ratio, J. Combin. Theory Ser. B 108 (2014) 29–39. doi:10.1016/j.jctb.2014.02.010
[13] M. Valencia-Pabon and J. Vera, Independence and coloring properties of direct products of some vertex-transitive graphs, Discrete Math. 306 (2006) 2275–2281. doi:10.1016/j.disc.2006.04.013
[14] H. Zhang, Primitivity and independent sets in direct products of vertex-transitive graphs, J. Graph Theory 67 (2011) 218–225. doi:10.1002/jgt.20526
[15] H. Zhang, Independent sets in direct products of vertex-transitive graphs, J. Combin. Theory Ser. B 102 (2012) 832–838. doi:10.1016/j.jctb.2011.12.005
[16] X. Zhu, A survey on Hedetniemi’s conjecture, Taiwanese J. Math. 2 (1998) 1–24. doi:10.11650/twjm/1500406890
[17] X. Zhu, The fractional version of Hedetniemi’s conjecture is true, European J. Com-bin. 32 (2011) 1168–1175. doi:10.1016/j.ejc.2011.03.004