Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a5, author = {McKee, Terry A.}, title = {Strongly {Unichord-Free} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {365--374}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a5/} }
McKee, Terry A. Strongly Unichord-Free Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 365-374. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a5/
[1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796
[2] G.A. Dirac, Minimally 2 -connected graphs, J. Reine Angew. Math. 228 (1967) 204–216. doi:10.1515/crll.1967.228.204
[3] B. Lévêque, F. Maffray and N. Trotignon, On graphs with no induced subdivision of K 4, J. Combin. Theory Ser. B 102 (2012) 924–947. doi:10.1016/j.jctb.2012.04.005
[4] R.C.S. Machado and C.M.H. de Figueiredo, Total chromatic number of unichordfree graphs, Discrete Appl. Math. 159 (2011) 1851–1864. doi:10.1016/j.dam.2011.03.024
[5] R.C.S. Machado, C.M.H. de Figueiredo and N. Trotignon, Edge-colouring and total-colouring chordless graphs, Discrete Math. 313 (2013) 1547–1552. doi:10.1016/j.disc.2013.03.020
[6] R.C.S. Machado, C.M.H. de Figueiredo and N. Trotignon, Complexity of colouring problems restricted to unichord-free and { square, unichord } -free graphs, Discrete Appl. Math. 164 (2014) 191–199. doi:10.1016/j.dam.2012.02.016
[7] R.C.S. Machado, C.M.H. de Figueiredo and K. Vušković, Chromatic index of graphs with no cycle with a unique chord, Theoret. Comput. Sci. 411 (2010) 1221–1234. doi:10.1016/j.tcs.2009.12.018
[8] W. Mader, On vertices of degree n in minimally n-connected graphs and digraphs, in: Combinatorics, Paul Erdős is Eighty 2 (Bolyai Soc. Stud. Math. Budapest, 1996) 423–449.
[9] T.A. McKee, Independent separator graphs, Util. Math. 73 (2007) 217–224.
[10] T.A. McKee, A new characterization of unichord-free graphs, Discuss. Math. Graph Theory 35 (2015) 765–771. doi:10.7151/dmgt.1831
[11] T.A. McKee, Double-crossed chords and distance-hereditary graphs, Australas. J. Combin. 65 (2016) 183–190.
[12] T.A. McKee and P. De Caria, Maxclique and unit disk characterizations of strongly chordal graphs, Discuss. Math. Graph Theory 34 (2014) 593–602. doi:10.7151/dmgt.1757
[13] M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85–94. doi:10.1090/S0002-9947-1968-0228369-8
[14] N. Trotignon and K. Vušković, A structure theorem for graphs with no cycle with a unique chord and its consequences, J. Graph Theory 63 (2010) 31–67. doi:10.1002/jgt.20405