Global Dominator Coloring of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 325-339

Voir la notice de l'article provenant de la source Library of Science

Let S ⊆ V. A vertex v ∈ V is a dominator of S if v dominates every vertex in S and v is said to be an anti-dominator of S if v dominates none of the vertices of S. Let C = (V1, V2, . . ., Vk) be a coloring of G and let v ∈ V (G). A color class Vi is called a dom-color class or an anti domcolor class of the vertex v according as v is a dominator of Vi or an antidominator of Vi. The coloring C is called a global dominator coloring of G if every vertex of G has a dom-color class and an anti dom-color class in C. The minimum number of colors required for a global dominator coloring of G is called the global dominator chromatic number and is denoted by χgd(G). This paper initiates a study on this notion of global dominator coloring.
Keywords: global domination, coloring, global dominator coloring, dominator coloring
@article{DMGT_2019_39_2_a2,
     author = {Hamid, Ismail Sahul and Rajeswari, Malairaj},
     title = {Global {Dominator} {Coloring} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {325--339},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a2/}
}
TY  - JOUR
AU  - Hamid, Ismail Sahul
AU  - Rajeswari, Malairaj
TI  - Global Dominator Coloring of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 325
EP  - 339
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a2/
LA  - en
ID  - DMGT_2019_39_2_a2
ER  - 
%0 Journal Article
%A Hamid, Ismail Sahul
%A Rajeswari, Malairaj
%T Global Dominator Coloring of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 325-339
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a2/
%G en
%F DMGT_2019_39_2_a2
Hamid, Ismail Sahul; Rajeswari, Malairaj. Global Dominator Coloring of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 325-339. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a2/