Global Dominator Coloring of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 325-339.

Voir la notice de l'article provenant de la source Library of Science

Let S ⊆ V. A vertex v ∈ V is a dominator of S if v dominates every vertex in S and v is said to be an anti-dominator of S if v dominates none of the vertices of S. Let C = (V1, V2, . . ., Vk) be a coloring of G and let v ∈ V (G). A color class Vi is called a dom-color class or an anti domcolor class of the vertex v according as v is a dominator of Vi or an antidominator of Vi. The coloring C is called a global dominator coloring of G if every vertex of G has a dom-color class and an anti dom-color class in C. The minimum number of colors required for a global dominator coloring of G is called the global dominator chromatic number and is denoted by χgd(G). This paper initiates a study on this notion of global dominator coloring.
Keywords: global domination, coloring, global dominator coloring, dominator coloring
@article{DMGT_2019_39_2_a2,
     author = {Hamid, Ismail Sahul and Rajeswari, Malairaj},
     title = {Global {Dominator} {Coloring} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {325--339},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a2/}
}
TY  - JOUR
AU  - Hamid, Ismail Sahul
AU  - Rajeswari, Malairaj
TI  - Global Dominator Coloring of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 325
EP  - 339
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a2/
LA  - en
ID  - DMGT_2019_39_2_a2
ER  - 
%0 Journal Article
%A Hamid, Ismail Sahul
%A Rajeswari, Malairaj
%T Global Dominator Coloring of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 325-339
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a2/
%G en
%F DMGT_2019_39_2_a2
Hamid, Ismail Sahul; Rajeswari, Malairaj. Global Dominator Coloring of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 325-339. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a2/

[1] S. Arumugam, J. Bagga and K.R. Chandrasekar, On dominator colorings in graphs, Proc. Indian Acad. Sci. Math. Sci. 122 (2012) 561–571. doi:10.1007/s12044-012-0092-5

[2] S. Arumugam, T.W. Haynes, M.A. Henning and Y. Nigussie, Maximal independent sets in minimum colorings, Discrete Math. 311 (2011) 1158–1163. doi:10.1016/j.disc.2010.06.045

[3] G. Chartrand and Lesniak, Graphs and Digraphs, Fourth Edition (CRC Press, Boca Raton, 2005).

[4] R. Gera, On dominator coloring in graphs, Graph Theory Notes N.Y. 52 (2007) 25–30.

[5] R. Gera, S. Horton and C. Rasmussen, Dominator colorings and safe clique partitions, Congr. Numer. 181 (2006) 19–32.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[7] J.E. Dunbar, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, D.J. Knisely, R. Laskar and D.F. Rall. Fall colorings of graphs, J. Combin. Math. Combin. Com-put. 33 (2000) 257–273.

[8] H.B. Merouane and M. Chellali, On the dominator colorings in trees, Discuss. Math. Graph Theory 32 (2012) 677–683. doi:10.7151/dmgt.1635

[9] L.B. Michaelraj, S.K. Ayyaswamy and S. Arumugam, Chromatic transversal domination in graphs, J. Combin. Math. Combin. Comput. 75 (2010) 33–40.