Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a19, author = {Beeler, Robert A. and Haynes, Teresa W. and Murphy, Kyle}, title = {1-Restricted {Optimal} {Rubbling} on {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {575--588}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a19/} }
TY - JOUR AU - Beeler, Robert A. AU - Haynes, Teresa W. AU - Murphy, Kyle TI - 1-Restricted Optimal Rubbling on Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 575 EP - 588 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a19/ LA - en ID - DMGT_2019_39_2_a19 ER -
Beeler, Robert A.; Haynes, Teresa W.; Murphy, Kyle. 1-Restricted Optimal Rubbling on Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 575-588. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a19/
[1] R.A. Beeler, T.W. Haynes and K. Murphy, An introduction to t-restricted optimal rubbling, Congr. Numer., to appear.
[2] C. Belford and N. Sieben, Rubbling and optimal rubbling of graphs, Discrete Math. 309 (2009) 3436–3446. doi:10.1016/j.disc.2008.09.035
[3] T.A. Clarke, R.A. Hochberg and G.H. Hurlbert, Pebbling in diameter two graphs and products of paths, J. Graph Theory 25 (1997) 119–128. doi:10.1002/(SICI)1097-0118(199706)25:2⟨119::AID-JGT3⟩3.0.CO;2-P
[4] R. Feng and J.Y. Kim, Graham’s pebbling conjecture on product of complete bipartite graphs, Sci. China Ser. A–Math. 44 (2001) 817–822. doi:10.1007/BF02880130
[5] H.-L. Fu and C.-L. Shiue, The optimal pebbling number of the complete m-ary tree, Discrete Math. 222 (2000) 89–100. doi:10.1016/S0012-365X(00)00008-X
[6] D.S. Herscovici, Graham’s pebbling conjecture on products of cycles, J. Graph Theory 42 (2003) 141–154. doi:10.1002/jgt.10080
[7] G.Y. Katona and L.F. Papp, The optimal rubbling number of ladders, prisms and Möbius-ladders, Discrete Appl. Math. 209 (2016) 227–246. doi:10.1016/j.dam.2015.10.026
[8] G.Y. Katona and N. Sieben, Bounds on the rubbling and optimal rubbling numbers of graphs, Graphs Combin. 29 (2013) 535–551. doi:10.1007/s00373-012-1146-2
[9] S.S. Wang, Pebbling and Graham’s conjecture, Discrete Math. 226 (2001) 431–438. doi:10.1016/S0012-365X(00)00177-1