The Second Neighbourhood for Bipartite Tournaments
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 555-565

Voir la notice de l'article provenant de la source Library of Science

Let T (X ∪ Y, A) be a bipartite tournament with partite sets X, Y and arc set A. For any vertex x ∈ X ∪Y, the second out-neighbourhood N++(x) of x is the set of all vertices with distance 2 from x. In this paper, we prove that T contains at least two vertices x such that |N++(x)| ≥ |N+(x)| unless T is in a special class ℬ1 of bipartite tournaments; show that T contains at least a vertex x such that |N++(x)| ≥ |N−(x)| and characterize the class ℬ2 of bipartite tournaments in which there exists exactly one vertex x with this property; and prove that if |X| = |Y | or |X| ≥ 4|Y |, then the bipartite tournament T contains a vertex x such that |N++(x)|+|N+(x)| ≥ 2|N(x)|.
Keywords: second out-neighbourhood, out-neighbourhood, in-neighbourhood, bipartite tournament
@article{DMGT_2019_39_2_a17,
     author = {Li, Ruijuan and Sheng, Bin},
     title = {The {Second} {Neighbourhood} for {Bipartite} {Tournaments}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {555--565},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a17/}
}
TY  - JOUR
AU  - Li, Ruijuan
AU  - Sheng, Bin
TI  - The Second Neighbourhood for Bipartite Tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 555
EP  - 565
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a17/
LA  - en
ID  - DMGT_2019_39_2_a17
ER  - 
%0 Journal Article
%A Li, Ruijuan
%A Sheng, Bin
%T The Second Neighbourhood for Bipartite Tournaments
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 555-565
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a17/
%G en
%F DMGT_2019_39_2_a17
Li, Ruijuan; Sheng, Bin. The Second Neighbourhood for Bipartite Tournaments. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 555-565. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a17/