Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a17, author = {Li, Ruijuan and Sheng, Bin}, title = {The {Second} {Neighbourhood} for {Bipartite} {Tournaments}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {555--565}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a17/} }
Li, Ruijuan; Sheng, Bin. The Second Neighbourhood for Bipartite Tournaments. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 555-565. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a17/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Ed. (Springer-Verlag, London, 2009).
[2] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141–161. doi:10.1002/jgt.3190200205
[3] G. Chen, J. Shen and R. Yuster, Second neighborhood via first neighborhood in digraphs, Ann. Combin. 7 (2003) 15–20. doi:10.1007/s000260300001
[4] Z. Cohn, A. Godbole, E. Wright Harkness and Y. Zhang, The number of Seymour vertices in random tournaments and digraphs, Graphs Combin. 32 (2016) 1805–1816. doi:10.1007/s00373-015-1672-9
[5] N. Dean and B.J. Latka, Squaring the tournament—an open problem, Congr. Numer. 109 (1995) 73–80.
[6] D. Fidler and R. Yuster, Remarks on the second neighborhood problem, J. Graph Theory 55 (2007) 208–220. doi:10.1002/jgt.v55:3
[7] D.C. Fisher, Squaring a tournament: a proof of Dean’s conjecture, J. Graph Theory 23 (1996) 43–48. doi:10.1002/(SICI)1097-0118(199609)23:1⟨43::AID-JGT4⟩3.0.CO;2-K
[8] S. Ghazal, Seymour’s second neighbourhood conjecture for tournaments missing a generalized star, J. Graph Theory 71 (2012) 89–94. doi:10.1002/jgt.20634
[9] G. Gutin and R. Li, Seymour’s second neighbourhood conjecture for quasi-transitive oriented graphs . arxiv.org/abs/1704.01389.
[10] F. Havet and S. Thomassé, Median orders of tournaments: a tool for the second neighborhood problem and Sumner’s conjecture, J. Graph Theory 35 (2000) 244–256. doi:10.1002/1097-0118(200012)35:4⟨244::AID-JGT2⟩3.0.CO;2-H
[11] Y. Kaneko and S.C. Locke, The minimum degree approach for Paul Seymour’s distance 2 conjecture, Congr. Numer. 148 (2001) 201–206.
[12] J.W. Moon, Solution to problem 463, Math. Mag. 35 (1962) 189. doi:10.2307/2688555
[13] B. Sullivan, A summary of results and problems related to the Caccetta-Häggkvist conjecture. arxiv.org/abs/math/0605646.
[14] R. Li and B. Sheng, The second neighbourhood for quasi-transitive oriented graphs, submitted.