On The Total Roman Domination in Trees
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 519-532
Voir la notice de l'article provenant de la source Library of Science
A total Roman dominating function on a graph G is a function f : V (G) → 0, 1, 2 satisfying the following conditions: (i) every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2 and (ii) the subgraph of G induced by the set of all vertices of positive weight has no isolated vertex. The weight of a total Roman dominating function f is the value f(V (G)) = Σu∈V(G) f(u). The total Roman domination number γtR(G) is the minimum weight of a total Roman dominating function of G. Ahangar et al. in [H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501–517] recently showed that for any graph G without isolated vertices, 2γ(G) ≤ γtR(G) ≤ 3γ(G), where γ(G) is the domination number of G, and they raised the problem of characterizing the graphs G achieving these upper and lower bounds. In this paper, we provide a constructive characterization of these trees.
Keywords:
total Roman dominating function, total Roman domination number, trees
@article{DMGT_2019_39_2_a14,
author = {Amjadi, Jafar and Sheikholeslami, Seyed Mahmoud and Soroudi, Marzieh},
title = {On {The} {Total} {Roman} {Domination} in {Trees}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {519--532},
publisher = {mathdoc},
volume = {39},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a14/}
}
TY - JOUR AU - Amjadi, Jafar AU - Sheikholeslami, Seyed Mahmoud AU - Soroudi, Marzieh TI - On The Total Roman Domination in Trees JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 519 EP - 532 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a14/ LA - en ID - DMGT_2019_39_2_a14 ER -
Amjadi, Jafar; Sheikholeslami, Seyed Mahmoud; Soroudi, Marzieh. On The Total Roman Domination in Trees. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 519-532. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a14/