Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a14, author = {Amjadi, Jafar and Sheikholeslami, Seyed Mahmoud and Soroudi, Marzieh}, title = {On {The} {Total} {Roman} {Domination} in {Trees}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {519--532}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a14/} }
TY - JOUR AU - Amjadi, Jafar AU - Sheikholeslami, Seyed Mahmoud AU - Soroudi, Marzieh TI - On The Total Roman Domination in Trees JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 519 EP - 532 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a14/ LA - en ID - DMGT_2019_39_2_a14 ER -
Amjadi, Jafar; Sheikholeslami, Seyed Mahmoud; Soroudi, Marzieh. On The Total Roman Domination in Trees. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 519-532. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a14/
[1] H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami and M. Soroudi, Bounds on the total Roman domination numbers, Ars Combin., to appear.
[2] H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee and L. Volkmann, Maximal Roman domination numbers in graphs, Util. Math. 103 (2017) 245–258.
[3] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501–517. doi:10.2298/AADM160802017A
[4] H. Abdollahzadeh Ahangar, T.W. Haynes and J.C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. 40 (2017) 1443–1454. doi:10.1007/s40840-015-0141-1
[5] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Global total Roman domination in graphs, Discrete Math. Algorithms Appl. 09 (2017) ID: 1750050. doi:10.1142/S1793830917500501
[6] J. Amjadi, S. Nazari-Moghaddam, S.M. Sheikholeslami and L. Volkmann, Total Roman domination number of trees, Australas. J. Combin. 69 (2017) 271–285.
[7] J. Amjadi, S.M. Sheikholeslami and M. Soroudi, Nordhaus-Gaddum bounds for total Roman domination, J. Comb. Optim. 35 (2018) 126–133. doi:10.1007/s10878-017-0158-5
[8] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29. doi:10.1016/j.dam.2016.03.017
[9] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2} -domination, Discrete Appl. Math. 204 (2016) 22–28. doi:10.1016/j.dam.2015.11.013
[10] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. doi:10.1016/j.disc.2003.06.004
[11] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness (W.H. Freeman and Co., San Francisco, Calif., 1979).
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker Inc., New York, 1998).
[14] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire—A new strategy, Discrete Math. 266 (2003) 239–251. doi:10.1016/S0012-365X(02)00811-7
[15] L.L. Kelleher and M.B. Cozzens, Dominating sets in social network graphs, Math. Social Sci. 16 (1988) 267–279. doi:10.1016/0165-4896(88)90041-8
[16] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608–619. doi:10.1007/s10878-012-9482-y
[17] C.S. ReVelle and K.E. Rosing, Defendens imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. doi:10.1080/00029890.2000.12005243
[18] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (1999) 136–138. doi:10.1038/scientificamerican1299-136