The Product Connectivity Banhatti Index of a Graph
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 505-517

Voir la notice de l'article provenant de la source Library of Science

Let G = (V, E) be a connected graph with vertex set V (G) and edge set E(G). The product connectivity Banhatti index of a graph G is defined as, PB(G)= ∑_ue1√( d_G(u) d_G(e) ), where ue means that the vertex u and edge e are incident in G. In this paper, we determine PB(G) of some standard classes of graphs. We also provide some relationship between PB(G) in terms of order, size, minimum / maximum degrees and minimal non-pendant vertex degree. In addition, we obtain some bounds on PB(G) in terms of Randić, Zagreb and other degree based topological indices of G.
Keywords: Randić index, Zagreb indices, Banhatti indices, product connectivity Banhatti index
@article{DMGT_2019_39_2_a13,
     author = {Kulli, V.R. and Chaluvaraju, B. and Boregowda, H.S.},
     title = {The {Product} {Connectivity} {Banhatti} {Index} of a {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {505--517},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a13/}
}
TY  - JOUR
AU  - Kulli, V.R.
AU  - Chaluvaraju, B.
AU  - Boregowda, H.S.
TI  - The Product Connectivity Banhatti Index of a Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 505
EP  - 517
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a13/
LA  - en
ID  - DMGT_2019_39_2_a13
ER  - 
%0 Journal Article
%A Kulli, V.R.
%A Chaluvaraju, B.
%A Boregowda, H.S.
%T The Product Connectivity Banhatti Index of a Graph
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 505-517
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a13/
%G en
%F DMGT_2019_39_2_a13
Kulli, V.R.; Chaluvaraju, B.; Boregowda, H.S. The Product Connectivity Banhatti Index of a Graph. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 505-517. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a13/