Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a13, author = {Kulli, V.R. and Chaluvaraju, B. and Boregowda, H.S.}, title = {The {Product} {Connectivity} {Banhatti} {Index} of a {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {505--517}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a13/} }
TY - JOUR AU - Kulli, V.R. AU - Chaluvaraju, B. AU - Boregowda, H.S. TI - The Product Connectivity Banhatti Index of a Graph JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 505 EP - 517 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a13/ LA - en ID - DMGT_2019_39_2_a13 ER -
Kulli, V.R.; Chaluvaraju, B.; Boregowda, H.S. The Product Connectivity Banhatti Index of a Graph. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 505-517. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a13/
[1] K.Ch. Das, S. Das and B. Zhou, Sum-connectivity index of a graph, Front. Math., China 11 (2016) 47–54. doi:10.1007/s11464-015-0470-2
[2] I. Gutman and B. Furtula, Recent Results in the Theory of Randić Index (Univ. Kragujevac, Kragujevac, 2008).
[3] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. doi:10.1016/0009-2614(72)85099-1
[4] I. Gutman, V.R. Kulli, B. Chaluvaraju and H.S. Boregowda, On Banhatti and Zagreb indices, J. Int. Math. Virtual Inst. 7 (2017) 53–67. doi:10.7251/JIMVI1701053G
[5] V.R. Kulli, College Graph Theory (Vishwa International Publications, Gulbarga, India, 2012).
[6] V.R. Kulli, On K Banhatti indices of graphs, J. Comput. Math. Sci. 7 (2016) 213–218.
[7] V.R. Kulli, On K indices of graphs, Internat. J. Fuzzy Math. Arch. 10 (2016) 105–109.
[8] V.R. Kulli, The first and second Ka indices and coindices of graphs, Internat. J. Math. Arch. 7 (2016) 71–77.
[9] V.R. Kulli, B. Chaluvaraju and H.S. Boregowda, On sum-connectivity Banhatti index of some nanostructures, submitted.
[10] X. Li and I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, Math. Chem. Monogr. 1 (Univ. Kragujevac, Kragujevac, 2006).
[11] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609–6615. doi:10.1021/ja00856a001
[12] T. Mansour, M.A. Rostami, E. Suresh and G.B.A. Xavier, On the bounds of the first reformulated Zagreb index, Turkish J. Anal. Number Theory 4 (2016) 8–15. doi:10.12691/tjant-4-1-2
[13] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
[14] B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270. doi:10.1007/s10910-008-9515-z
[15] B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210–218. doi:10.1007/s10910-009-9542-4