Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_2_a12, author = {Hajian, Majid and Rad, Nader Jafari}, title = {Fair {Domination} {Number} in {Cactus} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {489--503}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a12/} }
Hajian, Majid; Rad, Nader Jafari. Fair Domination Number in Cactus Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 489-503. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a12/
[1] Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914. doi:10.1016/j.disc.2012.05.006
[2] B. Chaluvaraju, M. Chellali and K.A. Vidya, Perfect k-domination in graphs, Australas. J. Combin. 48 (2010) 175–184.
[3] B. Chaluvaraju and K.A. Vidya, Perfect dominating set graph of a graph G, Adv. Appl. Discrete Math. 2 (2008) 49–57.
[4] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Comb. Inf. Syst. Sci. 18 (1993) 136–148.
[5] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008) 99–114.
[6] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009) 177–196.
[7] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991) 141–150.
[8] M. Hajian and N. Jafari Rad, Trees and unicyclic graphs with large fair domination number, Util. Math. accepted.
[9] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of prime cycles, Electron. J. Combin. 14 (2007) #N8.
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).