Fair Domination Number in Cactus Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 489-503.

Voir la notice de l'article provenant de la source Library of Science

For k ≥ 1, a k-fair dominating set (or just kFD-set) in a graph G is a dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V S. The k-fair domination number of G, denoted by fdk(G), is the minimum cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a kFD-set for some integer k ≥ 1. The fair domination number, denoted by fd(G), of G that is not the empty graph, is the minimum cardinality of an FD-set in G. In this paper, aiming to provide a particular answer to a problem posed in [Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914], we present a new upper bound for the fair domination number of a cactus graph, and characterize all cactus graphs G achieving equality in the upper bound of fd1(G).
Keywords: fair domination, cactus graph, unicyclic graph
@article{DMGT_2019_39_2_a12,
     author = {Hajian, Majid and Rad, Nader Jafari},
     title = {Fair {Domination} {Number} in {Cactus} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {489--503},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a12/}
}
TY  - JOUR
AU  - Hajian, Majid
AU  - Rad, Nader Jafari
TI  - Fair Domination Number in Cactus Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 489
EP  - 503
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a12/
LA  - en
ID  - DMGT_2019_39_2_a12
ER  - 
%0 Journal Article
%A Hajian, Majid
%A Rad, Nader Jafari
%T Fair Domination Number in Cactus Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 489-503
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a12/
%G en
%F DMGT_2019_39_2_a12
Hajian, Majid; Rad, Nader Jafari. Fair Domination Number in Cactus Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 489-503. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a12/

[1] Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914. doi:10.1016/j.disc.2012.05.006

[2] B. Chaluvaraju, M. Chellali and K.A. Vidya, Perfect k-domination in graphs, Australas. J. Combin. 48 (2010) 175–184.

[3] B. Chaluvaraju and K.A. Vidya, Perfect dominating set graph of a graph G, Adv. Appl. Discrete Math. 2 (2008) 49–57.

[4] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Comb. Inf. Syst. Sci. 18 (1993) 136–148.

[5] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008) 99–114.

[6] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009) 177–196.

[7] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991) 141–150.

[8] M. Hajian and N. Jafari Rad, Trees and unicyclic graphs with large fair domination number, Util. Math. accepted.

[9] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of prime cycles, Electron. J. Combin. 14 (2007) #N8.

[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).