On the b -Domatic Number of Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 313-324.

Voir la notice de l'article provenant de la source Library of Science

A set of vertices S in a graph G = (V, E) is a dominating set if every vertex not in S is adjacent to at least one vertex in S. A domatic partition of graph G is a partition of its vertex-set V into dominating sets. A domatic partition P of G is called b-domatic if no larger domatic partition of G can be obtained from P by transferring some vertices of some classes of P to form a new class. The minimum cardinality of a b-domatic partition of G is called the b-domatic number and is denoted by bd(G). In this paper, we explain some properties of b-domatic partitions, and we determine the b-domatic number of some families of graphs.
Keywords: domatic partition, domatic number, b-domatic partition, b-domatic number
@article{DMGT_2019_39_2_a1,
     author = {Benatallah, Mohammed and Ikhlef-Eschouf, Noureddine and Mihoubi, Miloud},
     title = {On the b {-Domatic} {Number} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {313--324},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a1/}
}
TY  - JOUR
AU  - Benatallah, Mohammed
AU  - Ikhlef-Eschouf, Noureddine
AU  - Mihoubi, Miloud
TI  - On the b -Domatic Number of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 313
EP  - 324
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a1/
LA  - en
ID  - DMGT_2019_39_2_a1
ER  - 
%0 Journal Article
%A Benatallah, Mohammed
%A Ikhlef-Eschouf, Noureddine
%A Mihoubi, Miloud
%T On the b -Domatic Number of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 313-324
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a1/
%G en
%F DMGT_2019_39_2_a1
Benatallah, Mohammed; Ikhlef-Eschouf, Noureddine; Mihoubi, Miloud. On the b -Domatic Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 2, pp. 313-324. http://geodesic.mathdoc.fr/item/DMGT_2019_39_2_a1/

[1] S. Arumugam and K. Raja Chandrasekar, Minimal dominating sets in maximum domatic partitions, Australas. J. Combin. 52 (2012) 281–292.

[2] C. Berge, Graphs (North Holland, 1985).

[3] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247–261. doi:10.1002/net.3230070305

[4] G.J. Chang, The domatic number problem, Discrete Math. 125 (1994) 115–122. doi:10.1016/0012-365X(94)90151-1

[5] O. Favaron, The b-domatic number of a graph, Discuss. Math. Graph Theory 33 (2013) 747–757. doi:10.7151/dmgt.1709

[6] F. Harary and S. Hedetniemi, The achromatic number of a graph, J. Combin. Theory 8 (1970) 154–161. doi:10.1016/S0021-9800(70)80072-2

[7] R.W. Irving and D.F. Manlove, The b-chromatic number of graphs, Discrete Appl. Math. 91 (1999) 127–141. doi:10.1016/S0166-218X(98)00146-2

[8] D.F. Manlove, Minimaximal and Maximinimal Optimization Problems: A Partial Order-Based Approach (Ph.D. Thesis, Tech. Rep. 27, Comp. Sci. Dept. Univ. Glasgow, Scotland, 1998).

[9] O. Ore, Theory of Graphs (Amer. Math. Soc, Providence, RI, 1962).

[10] S.H. Poon, W.C.K. Yen and C.T. Ung, Domatic partition on several classes of graphs, Combin. Optim Appl., Lecture Notes in Comput. Sci. 7402 (2012) 245–256. doi:10.1007/978-3-642-31770-5_22