Some Progress on the Double Roman Domination in Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 41-53
Voir la notice de l'article provenant de la source Library of Science
For a graph G = (V,E), a double Roman dominating function (or just DRDF) is a function f : V →0, 1, 2, 3 having the property that if f(v) = 0 for a vertex v, then v has at least two neighbors assigned 2 under f or one neighbor assigned 3 under f, and if f(v) = 1, then vertex v must have at least one neighbor w with f(w) ≥ 2. The weight of a DRDF f is the sum f(V) = Σ_ v ∈ V f(v), and the minimum weight of a DRDF on G is the double Roman domination number of G, denoted by γ_dR (G). In this paper, we derive sharp upper and lower bounds on γ_dR (G) + γ_dR ( G ) and also γ_dR (G ) γ_dR ( G ), where G is the complement of graph G. We also show that the decision problem for the double Roman domination number is NP- complete even when restricted to bipartite graphs and chordal graphs.
Keywords:
Roman domination, double Roman domination
@article{DMGT_2019_39_1_a4,
author = {Rad, Nader Jafari and Rahbani, Hadi},
title = {Some {Progress} on the {Double} {Roman} {Domination} in {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {41--53},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a4/}
}
TY - JOUR AU - Rad, Nader Jafari AU - Rahbani, Hadi TI - Some Progress on the Double Roman Domination in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 41 EP - 53 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a4/ LA - en ID - DMGT_2019_39_1_a4 ER -
Rad, Nader Jafari; Rahbani, Hadi. Some Progress on the Double Roman Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 41-53. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a4/