Bounding the Locating-Total Domination Number of a Tree in Terms of Its Annihilation Number
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 31-40.

Voir la notice de l'article provenant de la source Library of Science

Suppose G = (V,E) is a graph with no isolated vertex. A subset S of V is called a locating-total dominating set of G if every vertex in V is adjacent to a vertex in S, and for every pair of distinct vertices u and v in V − S, we have N(u) ∩ S N(v) ∩ S. The locating-total domination number of G, denoted by γ_t^L (G), is the minimum cardinality of a locating-total dominating set of G. The annihilation number of G, denoted by a(G), is the largest integer k such that the sum of the first k terms of the nondecreasing degree sequence of G is at most the number of edges in G. In this paper, we show that for any tree of order n ≥ 2, γ_t^L (T) ≤ a(T) + 1 and we characterize the trees achieving this bound.
Keywords: total domination, locating-total domination, annihilation num- ber, tree
@article{DMGT_2019_39_1_a3,
     author = {Ning, Wenjie and Lu, Mei and Wang, Kun},
     title = {Bounding the {Locating-Total} {Domination} {Number} of a {Tree} in {Terms} of {Its} {Annihilation} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {31--40},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a3/}
}
TY  - JOUR
AU  - Ning, Wenjie
AU  - Lu, Mei
AU  - Wang, Kun
TI  - Bounding the Locating-Total Domination Number of a Tree in Terms of Its Annihilation Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 31
EP  - 40
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a3/
LA  - en
ID  - DMGT_2019_39_1_a3
ER  - 
%0 Journal Article
%A Ning, Wenjie
%A Lu, Mei
%A Wang, Kun
%T Bounding the Locating-Total Domination Number of a Tree in Terms of Its Annihilation Number
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 31-40
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a3/
%G en
%F DMGT_2019_39_1_a3
Ning, Wenjie; Lu, Mei; Wang, Kun. Bounding the Locating-Total Domination Number of a Tree in Terms of Its Annihilation Number. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a3/

[1] M. Blidia and W. Dali, A characterization of locating-total domination edge critical graphs, Discuss. Math. Graph Theory 31 (2011) 197-202. doi: 10.7151/dmgt.1538

[2] M. Chellali, On locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (2008) 383-392. doi: 10.7151/dmgt.1414

[3] M. Chellali and N. Jafari Rad, Locating-total domination critical graphs, Australas. J. Combin. 45 (2009) 227-234.

[4] X. Chen and M.Y. Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (2011) 769-773. doi: 10.1016/j.dam.2010.12.025

[5] W.J. Desormeaux, T.W. Haynes and M.A. Henning, Relating the annihilation num- ber and the total domination number of a tree, Discrete Appl. Math. 161 (2013) 349-354. doi: 10.1016/j.dam.2012.09.006

[6] W.J. Desormeaux, M.A. Henning, D.F. Rall and A. Yeos, Relating the annihilation number and the 2-domination number of a tree, Discrete Math. 319 (2014) 15-23. doi: 10.1016/j.disc.2013.11.020

[7] O. Favaron, M.A. Henning, J. Puecha and D. Rautenbach, On domination and annihilation in graphs with claw-free blocks, Discrete Math. 231 (2001) 143-151. doi: 10.1016/S0012-365X(00)00313-7

[8] J.R. Griggs and D.J. Kleitman, Independence and the Havel-Hakimi residue, Dis- crete Math. 127 (1994) 209-212. doi: 10.1016/0012-365X(92)00479-B

[9] T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293-1300. doi: 10.1016/j.dam.2006.01.002

[10] M.A. Henning and N. Jafari Rad, Locating-total domination in graphs, Discrete Appl. Math. 160 (2012) 1986-1993. doi: 10.1016/j.dam.2012.04.004

[11] L. Jennings, New Sufficient Condition for Hamiltonian Paths (Ph.D. Dissertation, Rice University, 2008).

[12] C.E. Larson and R. Pepper, Graphs with equal independence and annihilation num- bers, Electron. J. Combin. 18 (2011) #P180.

[13] R. Pepper, Binding Independence (Ph.D. Dissertation, University of Houston, 2004).

[14] R. Pepper, On the annihilation number of a graph, in: Recent Advances in Applied Mathematics and Computational and Information Sciences, Vol. I, K. Jegdic, P. Simeonov, V. Zafiris (Ed(s)), (WSEAS Press, 2009) 217-220.