Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a3, author = {Ning, Wenjie and Lu, Mei and Wang, Kun}, title = {Bounding the {Locating-Total} {Domination} {Number} of a {Tree} in {Terms} of {Its} {Annihilation} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {31--40}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a3/} }
TY - JOUR AU - Ning, Wenjie AU - Lu, Mei AU - Wang, Kun TI - Bounding the Locating-Total Domination Number of a Tree in Terms of Its Annihilation Number JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 31 EP - 40 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a3/ LA - en ID - DMGT_2019_39_1_a3 ER -
%0 Journal Article %A Ning, Wenjie %A Lu, Mei %A Wang, Kun %T Bounding the Locating-Total Domination Number of a Tree in Terms of Its Annihilation Number %J Discussiones Mathematicae. Graph Theory %D 2019 %P 31-40 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a3/ %G en %F DMGT_2019_39_1_a3
Ning, Wenjie; Lu, Mei; Wang, Kun. Bounding the Locating-Total Domination Number of a Tree in Terms of Its Annihilation Number. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a3/
[1] M. Blidia and W. Dali, A characterization of locating-total domination edge critical graphs, Discuss. Math. Graph Theory 31 (2011) 197-202. doi: 10.7151/dmgt.1538
[2] M. Chellali, On locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (2008) 383-392. doi: 10.7151/dmgt.1414
[3] M. Chellali and N. Jafari Rad, Locating-total domination critical graphs, Australas. J. Combin. 45 (2009) 227-234.
[4] X. Chen and M.Y. Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (2011) 769-773. doi: 10.1016/j.dam.2010.12.025
[5] W.J. Desormeaux, T.W. Haynes and M.A. Henning, Relating the annihilation num- ber and the total domination number of a tree, Discrete Appl. Math. 161 (2013) 349-354. doi: 10.1016/j.dam.2012.09.006
[6] W.J. Desormeaux, M.A. Henning, D.F. Rall and A. Yeos, Relating the annihilation number and the 2-domination number of a tree, Discrete Math. 319 (2014) 15-23. doi: 10.1016/j.disc.2013.11.020
[7] O. Favaron, M.A. Henning, J. Puecha and D. Rautenbach, On domination and annihilation in graphs with claw-free blocks, Discrete Math. 231 (2001) 143-151. doi: 10.1016/S0012-365X(00)00313-7
[8] J.R. Griggs and D.J. Kleitman, Independence and the Havel-Hakimi residue, Dis- crete Math. 127 (1994) 209-212. doi: 10.1016/0012-365X(92)00479-B
[9] T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293-1300. doi: 10.1016/j.dam.2006.01.002
[10] M.A. Henning and N. Jafari Rad, Locating-total domination in graphs, Discrete Appl. Math. 160 (2012) 1986-1993. doi: 10.1016/j.dam.2012.04.004
[11] L. Jennings, New Sufficient Condition for Hamiltonian Paths (Ph.D. Dissertation, Rice University, 2008).
[12] C.E. Larson and R. Pepper, Graphs with equal independence and annihilation num- bers, Electron. J. Combin. 18 (2011) #P180.
[13] R. Pepper, Binding Independence (Ph.D. Dissertation, University of Houston, 2004).
[14] R. Pepper, On the annihilation number of a graph, in: Recent Advances in Applied Mathematics and Computational and Information Sciences, Vol. I, K. Jegdic, P. Simeonov, V. Zafiris (Ed(s)), (WSEAS Press, 2009) 217-220.