Decomposition of the Product of Cycles Based on Degree Partition
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 241-256
Voir la notice de l'article provenant de la source Library of Science
The Cartesian product of n cycles is a 2n-regular, 2n-connected and bi- pancyclic graph. Let G be the Cartesian product of n even cycles and let 2n = n1+ n2+ ・ ・ ・ + nk with k ≥ 2 and ni ≥ 2 for each i. We prove that if k = 2, then G can be decomposed into two spanning subgraphs G1 and G2 such that each Gi is ni-regular, ni-connected, and bipancyclic or nearly bipancyclic. For k gt; 2, we establish that if all ni in the partition of 2n are even, then G can be decomposed into k spanning subgraphs G1, G2, . . ., Gk such that each Gi is ni-regular and ni-connected. These results are analogous to the corresponding results for hypercubes.
Keywords:
hypercube, Cartesian product, n-connected, regular, bipan- cyclic, spanning subgraph
@article{DMGT_2019_39_1_a18,
author = {Borse, Y. M. and Shaikh, S. R.},
title = {Decomposition of the {Product} of {Cycles} {Based} on {Degree} {Partition}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {241--256},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a18/}
}
TY - JOUR AU - Borse, Y. M. AU - Shaikh, S. R. TI - Decomposition of the Product of Cycles Based on Degree Partition JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 241 EP - 256 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a18/ LA - en ID - DMGT_2019_39_1_a18 ER -
Borse, Y. M.; Shaikh, S. R. Decomposition of the Product of Cycles Based on Degree Partition. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 241-256. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a18/