Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a16, author = {Dybizba\'nski, Janusz and Nenca, Anna}, title = {Oriented {Chromatic} {Number} of {Cartesian} {Products} and {Strong} {Products} of {Paths}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {211--223}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a16/} }
TY - JOUR AU - Dybizbański, Janusz AU - Nenca, Anna TI - Oriented Chromatic Number of Cartesian Products and Strong Products of Paths JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 211 EP - 223 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a16/ LA - en ID - DMGT_2019_39_1_a16 ER -
%0 Journal Article %A Dybizbański, Janusz %A Nenca, Anna %T Oriented Chromatic Number of Cartesian Products and Strong Products of Paths %J Discussiones Mathematicae. Graph Theory %D 2019 %P 211-223 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a16/ %G en %F DMGT_2019_39_1_a16
Dybizbański, Janusz; Nenca, Anna. Oriented Chromatic Number of Cartesian Products and Strong Products of Paths. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 211-223. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a16/
[1] N.R. Aravind, N. Narayanan and C.R. Subramanian, Oriented colouring of some graph products, Discuss. Math. Graph Theory 31 (2011) 675-686. doi: 10.7151/dmgt.1572
[2] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77-89. doi: 10.1016/S0012-365X(98)00393-8
[3] J. Dybizbański and A. Nenca, Oriented chromatic number of grids is greater than 7, Inform. Process. Lett. 112 (2012) 113-117. doi: 10.1016/j.ipl.2011.10.019
[4] J. Dybizbański and A. Szepietowski, The oriented chromatic number of Halin graphs, Inform. Process. Lett. 114 (2014) 45-49. doi: 10.1016/j.ipl.2013.09.011
[5] G. Fertin, A. Raspaud and A. Roychowdhury, On the oriented chromatic number of grids, Inform. Process. Lett. 85 (2003) 261-266. doi: 10.1016/S0020-0190(02)00405-2
[6] E. Fried, On homogeneous tournaments, Combin. Theory Appl. 2 (1970) 467-476.
[7] A.V. Kostochka, É. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340. doi: 10.1002/(SICI)1097-0118(199704)24:4h331::AID-JGT5i3.0.CO;2-P
[8] M. Hosseini Dolama and É. Sopena, On the oriented chromatic number of graphs with given excess, Discrete Math. 306 (2006) 1342-1350. doi: 10.1016/j.disc.2005.12.023
[9] M. Hosseini Dolama and É. Sopena, On the oriented chromatic number of Halin graphs, Inform. Process. Lett. 98 (2006) 247-252. doi: 10.1016/j.ipl.2005.03.016
[10] B.D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2013) 94-112. doi: 10.1016/j.jsc.2013.09.003
[11] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar graphs, Inform. Process. Lett. 51 (1994) 171-174. doi: 10.1016/0020-0190(94)00088-3
[12] É. Sopena, Homomorphisms and colourings of oriented graphs: An updated survey, Discrete Math. 339 (2016) 1993-2005. doi: 10.1016/j.disc.2015.03.018
[13] ´E. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369. doi: 10.1016/S0012-365X(00)00216-8
[14] É. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205. doi: 10.1002/(SICI)1097-0118(199707)25:3h191::AID-JGT3i3.0.CO;2-G
[15] É. Sopena, There exist oriented planar graphs with oriented chromatic number at least sixteen, Inform. Process. Lett. 81 (2002) 309-312. doi: 10.1016/S0020-0190(01)00246-0
[16] É. Sopena, Upper oriented chromatic number of undirected graphs and oriented col- orings of product graphs, Discuss. Math. Graph Theory 32 (2012) 517-533. doi: 10.7151/dmgt.1624
[17] É. Sopena and L. Vignal, A note on the oriented chromatic number of graphs with maximum degree three, Research Report (Bordeaux I University, 1996).
[18] A. Szepietowski and M. Targan, A note on the oriented chromatic number of grids, Inform. Process. Lett. 92 (2004) 65-70. doi: 10.1016/j.ipl.2004.06.014.