Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a15, author = {Duffy, Christopher and MacGillivray, Gary and Ochem, Pascal and Raspaud, Andr\'e}, title = {Oriented {Incidence} {Colourings} of {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {191--210}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a15/} }
TY - JOUR AU - Duffy, Christopher AU - MacGillivray, Gary AU - Ochem, Pascal AU - Raspaud, André TI - Oriented Incidence Colourings of Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 191 EP - 210 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a15/ LA - en ID - DMGT_2019_39_1_a15 ER -
%0 Journal Article %A Duffy, Christopher %A MacGillivray, Gary %A Ochem, Pascal %A Raspaud, André %T Oriented Incidence Colourings of Digraphs %J Discussiones Mathematicae. Graph Theory %D 2019 %P 191-210 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a15/ %G en %F DMGT_2019_39_1_a15
Duffy, Christopher; MacGillivray, Gary; Ochem, Pascal; Raspaud, André. Oriented Incidence Colourings of Digraphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 191-210. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a15/
[1] K. Appel, W. Haken and J. Koch, Every planar map is four colorable. Part rm II: Reducibility, Illinois J. Math. 21 (1977) 491-567.
[2] J. Bang-Jensen, P. Hell and G. MacGillivray, The complexity of colouring by semi-complete digraphs, SIAM J. Discrete Math. 1 (1988) 281-298. doi: 10.1137/0401029
[3] L. Barto, M. Kozik and T. Niven, The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell), SIAM J. Comput. 38 (2009) 1782-1802. doi: 10.1137/070708093
[4] J. Bensmail, C. Duffy and S. Sen, Analogues of cliques for (m, n)-colored mixed graphs, Graphs Combin. 33 (2017) 735 - 750. doi: 10.1007/s00373-017-1807-2
[5] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, London, 2008).
[6] R.A. Brualdi and J.J. Quinn Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51-58. doi: 10.1016/0012-365X(93)90286-3
[7] B. Courcelle, The monadic second order logic of graphs VI: on several representa- tions of graphs by relational structures., Discrete Appl. Math. 54 (1994) 117-129. doi: 10.1016/0166-218X(94)90019-1
[8] W.D. Fellner, On minimal graphs, Theoret. Comput. Sci. 17 (1982) 103-110. doi: 10.1016/0304-3975(82)90135-9
[9] R.L. Graham and N.J.A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory 26 (1980) 37-43. doi: 10.1109/TIT.1980.1056141
[10] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B 48 (1990) 92-110. doi: 10.1016/0095-8956(90)90132-J
[11] M. Hosseini Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121-128. doi: 10.1016/j.disc.2004.01.015
[12] W. Klostermeyer and G. MacGillivray, Homomorphisms and oriented colorings of equivalence classes of oriented graphs, Discrete Math. 274 (2004) 161-172. doi: 10.1016/S0012-365X(03)00086-4
[13] A.V. Kostochka, E. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340. doi: 10.1002/(SICI)1097-0118(199704)24:4h331::AID-JGT5i3.0.CO;2-P
[14] G. MacGillivray and K. Sherk, A theory of 2-dipath colourings, Australas. J. Com- bin. 60 (2014) 11-26.
[15] G. MacGillivray and J.S. Swarts, Obstructions to homomorphisms involving the graft extension, manuscript.
[16] T.H. Marshall, Homomorphism bounds for oriented planar graphs, J. Graph Theory 55 (2007) 175-190. doi: 10.1002/jgt.20233
[17] J. Nešetřil and A. Pultr, On classes of relations and graphs determined by subobjects and factorobjects, Discrete Math. 22 (1978) 287-300. doi: 10.1016/0012-365X(78)90062-6
[18] S. Sen, Maximum order of a planar oclique is 15, in: Proc. 23rd International Workshop on Combinatorial Algorithms, W.F. Smyth and S. Arumugam (Ed(s)), (Springer, 2012) 130-142. doi: 10.1007/978-3-642-35926-2 16
[19] E. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369. doi: 10.1016/S0012-365X(00)00216-8
[20] P.K. Sun, Incidence coloring of regular graphs and complement graphs, Taiwanese J. Math. 16 (2012) 2289-2295. doi: 10.11650/twjm/1500406852
[21] E. Welzl, Color-families are dense, Theoret. Comput. Sci. 17 (1982) 29-41. doi: 10.1016/0304-3975(82)90129-3
[22] J. Wu, Some results on the incidence coloring number of a graph, Discrete Math. 309 (2009) 3866-3870. doi: 10.1016/j.disc.2008.10.027
[23] K. Young, 2-Dipath and Proper 2-Dipath Colouring (Masters Thesis, University of Victoria, 2009).