Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 183-190

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph and a, b and k be nonnegative integers with 1 ≤ a ≤ b. A graph G is defined as all fractional (a, b, k)-critical if after deleting any k vertices of G, the remaining graph has all fractional [a, b]-factors. In this paper, we prove that if κ(G) ≥max{(b+1)^2+2k2, (b+1)^2 α(G)+4ak4a}, then G is all fractional (a, b, k)-critical. If k = 0, we improve the result given in [Filomat 29 (2015) 757-761]. Moreover, we show that this result is best possible in some sense.
Keywords: independence number, connectivity, fractional [a, b]-factor, frac- tional (a, b, k)-critical graph, all fractional (a
@article{DMGT_2019_39_1_a14,
     author = {Yuan, Yuan and Hao, Rong-Xia},
     title = {Independence {Number,} {Connectivity} and {All} {Fractional} (a, b, {k)-Critical} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {183--190},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/}
}
TY  - JOUR
AU  - Yuan, Yuan
AU  - Hao, Rong-Xia
TI  - Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 183
EP  - 190
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/
LA  - en
ID  - DMGT_2019_39_1_a14
ER  - 
%0 Journal Article
%A Yuan, Yuan
%A Hao, Rong-Xia
%T Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 183-190
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/
%G en
%F DMGT_2019_39_1_a14
Yuan, Yuan; Hao, Rong-Xia. Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 183-190. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/