Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 183-190
Voir la notice de l'article provenant de la source Library of Science
Let G be a graph and a, b and k be nonnegative integers with 1 ≤ a ≤ b. A graph G is defined as all fractional (a, b, k)-critical if after deleting any k vertices of G, the remaining graph has all fractional [a, b]-factors. In this paper, we prove that if κ(G) ≥max{(b+1)^2+2k2, (b+1)^2 α(G)+4ak4a}, then G is all fractional (a, b, k)-critical. If k = 0, we improve the result given in [Filomat 29 (2015) 757-761]. Moreover, we show that this result is best possible in some sense.
Keywords:
independence number, connectivity, fractional [a, b]-factor, frac- tional (a, b, k)-critical graph, all fractional (a
@article{DMGT_2019_39_1_a14,
author = {Yuan, Yuan and Hao, Rong-Xia},
title = {Independence {Number,} {Connectivity} and {All} {Fractional} (a, b, {k)-Critical} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {183--190},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/}
}
TY - JOUR AU - Yuan, Yuan AU - Hao, Rong-Xia TI - Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 183 EP - 190 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/ LA - en ID - DMGT_2019_39_1_a14 ER -
Yuan, Yuan; Hao, Rong-Xia. Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 183-190. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/