Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 183-190.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph and a, b and k be nonnegative integers with 1 ≤ a ≤ b. A graph G is defined as all fractional (a, b, k)-critical if after deleting any k vertices of G, the remaining graph has all fractional [a, b]-factors. In this paper, we prove that if κ(G) ≥max{(b+1)^2+2k2, (b+1)^2 α(G)+4ak4a}, then G is all fractional (a, b, k)-critical. If k = 0, we improve the result given in [Filomat 29 (2015) 757-761]. Moreover, we show that this result is best possible in some sense.
Keywords: independence number, connectivity, fractional [a, b]-factor, frac- tional (a, b, k)-critical graph, all fractional (a
@article{DMGT_2019_39_1_a14,
     author = {Yuan, Yuan and Hao, Rong-Xia},
     title = {Independence {Number,} {Connectivity} and {All} {Fractional} (a, b, {k)-Critical} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {183--190},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/}
}
TY  - JOUR
AU  - Yuan, Yuan
AU  - Hao, Rong-Xia
TI  - Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 183
EP  - 190
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/
LA  - en
ID  - DMGT_2019_39_1_a14
ER  - 
%0 Journal Article
%A Yuan, Yuan
%A Hao, Rong-Xia
%T Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 183-190
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/
%G en
%F DMGT_2019_39_1_a14
Yuan, Yuan; Hao, Rong-Xia. Independence Number, Connectivity and All Fractional (a, b, k)-Critical Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 183-190. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a14/

[1] R.P. Anstee, Simplified existence theorems for (g, f)-factors, Discrete Appl. Math. 27 (1990) 29-38. doi: 10.1016/0166-218X(90)90126-W

[2] Q. Bian and S. Zhou, Independence number, connectivity and fractional (g, f)-factors in graphs, Filomat 29 (2015) 757-761. doi: 10.2298/FIL1504757B

[3] J.R. Correa and M. Matamala, Some remarks about factors of graphs, J. Graph Theory 57 (2008) 265-274. doi: 10.1002/jgt.20284

[4] S. Liu and J. Cai, Toughness and existence of fractional (g, f)-factors in graphs, Ars Combin. 93 (2009) 305-311.

[5] G. Liu and L. Zhang, Fractional (g, f)-factors of graphs, Acta Math. Sci. Ser. B Engl. Ed. 21 (2001) 541-545. doi: 10.1016/S0252-9602(17)30443-5

[6] H. Lu, Simplified existence theorems on all fractional [a, b]-factors, Discrete Appl. Math. 161 (2013) 2075-2078. doi: 10.1016/j.dam.2013.02.006

[7] T. Niessen, A characterization of graphs having all (g, f)-factors, J. Combin. Theory Ser. B 72 (1998) 152-156. doi: 10.1006/jctb.1997.1797

[8] T. Nishimura, Independence number, connectivity, and r-factors, J. Graph Theory 13 (1989) 63-69. doi: 10.1002/jgt.3190130109

[9] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Math. 309 (2009) 4144-4148. doi: 10.1016/j.disc.2008.12.013

[10] S. Zhou, Some results about component factors in graphs, RAIRO Oper. Res., ac- cepted. doi: 10.1051/ro/2017045

[11] S. Zhou, Q. Bian and Z. Sun, Binding numbers for all fractional (a, b, k)-critical graphs, Filomat 28 (2014) 709-713. doi: 10.2298/FIL1404709Z

[12] S. Zhou and Z. Sun, On all fractional (a, b, k)-critical graphs, Acta Math. Sin. Engl. Ser. 30 (2014) 696-702. doi: 10.1007/s10114-014-2629-2

[13] S. Zhou, Z. Sun and Z. Xu, A result on r-orthogonal factorizations in digraphs, European J. Combin. 65 (2017) 15-23. doi: 10.1016/j.ejc.2017.05.001

[14] S. Zhou, J. Wu and T. Zhang, The existence of P≥3-factor covered graphs, Discuss. Math. Graph Theory 37 (2017) 1055-1065. doi: 10.7151/dmgt.1974.