On the Hamiltonian Number of a Plane Graph
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 171-181

Voir la notice de l'article provenant de la source Library of Science

The Hamiltonian number of a connected graph is the minimum of the lengths of the closed spanning walks in the graph. In 1968, Grinberg published a necessary condition for the existence of a Hamiltonian cycle in a plane graph, formulated in terms of the degrees of its faces. We show how Grinberg’s theorem can be adapted to provide a lower bound on the Hamiltonian number of a plane graph.
Keywords: Hamiltonian cycle, Hamiltonian walk, Hamiltonian number, Hamiltonian spectrum, Grinberg’s theorem, planar graph
@article{DMGT_2019_39_1_a13,
     author = {Lewis, Thomas M.},
     title = {On the {Hamiltonian} {Number} of a {Plane} {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a13/}
}
TY  - JOUR
AU  - Lewis, Thomas M.
TI  - On the Hamiltonian Number of a Plane Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2019
SP  - 171
EP  - 181
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a13/
LA  - en
ID  - DMGT_2019_39_1_a13
ER  - 
%0 Journal Article
%A Lewis, Thomas M.
%T On the Hamiltonian Number of a Plane Graph
%J Discussiones Mathematicae. Graph Theory
%D 2019
%P 171-181
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a13/
%G en
%F DMGT_2019_39_1_a13
Lewis, Thomas M. On the Hamiltonian Number of a Plane Graph. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 171-181. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a13/