Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a13, author = {Lewis, Thomas M.}, title = {On the {Hamiltonian} {Number} of a {Plane} {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {171--181}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a13/} }
Lewis, Thomas M. On the Hamiltonian Number of a Plane Graph. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 171-181. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a13/
[1] M. Araya and G. Wiener, On cubic planar hypohamiltonian and hypotraceable graphs, Electron. J. Combin. 18 (2011) #P85.
[2] T. Asano, T. Nishizeki and T. Watanabe, An upper bound on the length of a Hamil- tonian walk of a maximal planar graph, J. Graph Theory 4 (1980) 315-336. doi: 10.1002/jgt.3190040310
[3] J.-C. Bermond, On Hamiltonian walks, in: Proceedings of the Fifth British Combinatorial Conference, Util. Math., Winnipeg, Man. (1975) 41-51.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).
[5] G.J. Chang, T.-D. Chang and L.-D. Tong, Hamiltonian numbers of M¨obius double loop networks, J. Comb. Optim. 23 (2012) 462-470. doi: 10.1007/s10878-010-9360-4
[6] T.-D. Chang and L.-D. Tong, The Hamiltonian numbers in digraphs, J. Combin. Optim. 25 (2013) 694-701. doi: 10.1007/s10878-012-9512-9
[7] G. Chartrand and P. Zhang, A First Course in Graph Theory (Dover Publications, Incorporated, 2012).
[8] G. Chartrand, T. Thomas, P. Zhang and V. Saenpholphat, A new look at Hamilto- nian walks, Bull. Inst. Combin. Appl. 42 (2004) 37-52. [9] S.E. Goodman and S.T. Hedetniemi, On Hamiltonian walks in graphs, SIAM J. Comput. 3 (1974) 214-221. doi: 10.1137/0203017
[9] S.E. Goodman, S.T. Hedetniemi and P.J. Slater, Advances on the Hamiltonian com- pletion problem, J. Association Computing Machinery 22 (1975) 352-360. doi: 10.1145/321892.321897
[10] E. Grinberg, Plane homogeneous graphs of degree three without Hamiltonian circuits, Latvian Math. Yearbook 4, Izdat. “Zinatne”, Riga (1968) 51-58, in Russian.
[11] D. Král, L.-D. Tong and X. Zhu, Upper Hamiltonian numbers and Hamiltonian spectra of graphs, Australas. J. Combin. 35 (2006) 329-340.
[12] D. Liu, Hamiltonian spectra of trees, Ars Combin. 99 (2011) 415-419.
[13] T. Nishizeki, T. Asano and T.Watanabe, An approximation algorithm for the Hamil- tonian walk problem on maximal planar graphs, Discrete Appl. Math. 5 (1983) 211-222. doi: 10.1016/0166-218X(83)90042-2
[14] F. Okamoto, P. Zhang and V. Saenpholphat, The upper traceable number of a graph, Czechoslovak Math. J. 58 (2008) 271-287. doi: 10.1007/s10587-008-0016-9
[15] N. Punnim, V. Saenpholphat and S. Thaithae, Almost Hamiltonian cubic graphs, Internat. J. Comput. Sci. Inform. Security 7 (2007) 83-86.
[16] N. Punnim and S. Thaithae, The Hamiltonian number of some classes of cubic graphs, East-West J. Math. 12 (2010) 17-26.
[17] V. Saenpholphat, F. Okamoto and P. Zhang, Measures of traceability in graphs, Math. Bohem. 131 (2006) 63-83.
[18] S. Thaithae and N. Punnim, The Hamiltonian number of cubic graphs, in: Computational Geometry and Graph Theory, Lecture Notes in Comput. Sci. 4535, H. Ito, M. Kano, N. Katoh and Y. Uno (Ed(s)), (Springer, Berlin, Heidelberg, 2008) 213-223. doi: 10.1007/978-3-540-89550-3 23
[19] P. Vacek, On open Hamiltonian walks in graphs, Arch. Math. (Brno) 27A (1991) 105-111.
[20] P. Vacek, Bounds of lengths of open Hamiltonian walks, Arch. Math. (Brno) 28 (1992) 11-16.
[21] G. Wiener and M. Araya, On planar hypohamiltonian graphs, J. Graph Theory 67 (2011) 55-68. doi: 10.1002/jgt.20513.