Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a12, author = {Horn, Paul and Gould, Ronald J. and Jacobson, Michael S. and Thomas, Brent J.}, title = {Gaps in the {Saturation} {Spectrum} of {Trees}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {157--170}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a12/} }
TY - JOUR AU - Horn, Paul AU - Gould, Ronald J. AU - Jacobson, Michael S. AU - Thomas, Brent J. TI - Gaps in the Saturation Spectrum of Trees JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 157 EP - 170 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a12/ LA - en ID - DMGT_2019_39_1_a12 ER -
%0 Journal Article %A Horn, Paul %A Gould, Ronald J. %A Jacobson, Michael S. %A Thomas, Brent J. %T Gaps in the Saturation Spectrum of Trees %J Discussiones Mathematicae. Graph Theory %D 2019 %P 157-170 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a12/ %G en %F DMGT_2019_39_1_a12
Horn, Paul; Gould, Ronald J.; Jacobson, Michael S.; Thomas, Brent J. Gaps in the Saturation Spectrum of Trees. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 157-170. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a12/
[1] K. Amin, J. Faudree, R.J. Gould and E. Sidorowicz, On the non-(p − 1)-partite Kp-free graphs, Discuss. Math. Graph Theory 33 (2013) 9-23. doi: 10.7151/dmgt.1654
[2] C. Barefoot, K. Casey, D. Fisher, K. Fraughnaugh and F. Harary, Size in maximal triangle-free graphs and minimal graphs of diameter 2, Discrete Math. 138 (1995) 93-99. doi: 10.1016/0012-365X(94)00190-T
[3] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. s3-2 (1952) 69-81. doi: 10.1112/plms/s3-2.1.69
[4] P. Erdős, Extremal problems in graph theory, in: Proc. Sympos. Smolenice 13 (1963) 29-36.
[5] P. Erdős, and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1965) 51-57.
[6] P.Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356.
[7] J. Faudree, R.J. Gould, M. Jacobson and B. Thomas, Saturation spectrum for brooms, manuscript.
[8] R.J. Gould, W. Tang, E. Wei and C. Zhang, The edge spectrum of the saturation number for small paths, Discrete Math. 312 (2012) 2682-2689. doi: 10.1016/j.disc.2012.01.012
[9] W. Mantel, Problem 28, Wiskundige Opgaven 10 (1907) 60-61.
[10] A. McLennan, The Erdős-Sόs conjecture for trees of diameter four, J. Graph Theory 49 (2005) 291-301. doi: 10.1002/jgt.20083
[11] A.F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, Combi- natorica 9 (1989) 207-215. doi: 10.1007/BF02124681
[12] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452, in Hungarian.
[13] A. Doǧan, On Saturated Graphs and Combinatorial Games (University of Memphis, 2016).
[14] J. Hladký, J. Komlόs, D. Piguet, M. Simonovits, M. Stein and E. Szemerédi, The approximate Loebl-Komlόs-Sόs Conjecture I: The sparse decomposition, SIAM J. Discrete Math. 31 (2017) 945-982. doi: 10.1137/140982842
[15] J.Hladký, J. Komlόs, D. Piguet, M. Simonovits, M. Stein and E. Szemerédi, The approximate Loebl-Komlόs-Sόs Conjecture II: The rough structure of LKS graphs, SIAM J. Discrete Math. 31 (2017) 983-1016. doi: 10.1137/140982854
[16] J.Hladký, J. Komlόs, D. Piguet, M. Simonovits, M. Stein and E. Szemerédi, The approximate Loebl-Komlόs-Sόs Conjecture III: The finer structure of LKS graphs, SIAM J. Discrete Math. 31 (2017) 1017-1071. doi: 10.1137/140982866
[17] J. Hladký, J. Komlόs, D. Piguet, M. Simonovits, M. Stein, M. and E. Szemerédi, The approximate Loebl-Komlόs-Sόs Conjecture IV: Embedding techniques and the proof of the main result, SIAM J. Discrete Math. 31 (2017) 1072-1148. doi: 10.1137/140982878.