Gaps in the Saturation Spectrum of Trees
Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 157-170
Voir la notice de l'article provenant de la source Library of Science
A graph G is H-saturated if H is not a subgraph of G but the addition of any edge from the complement of G to G results in a copy of H. The minimum number of edges (the size) of an H-saturated graph on n vertices is denoted sat(n,H), while the maximum size is the well studied extremal number, ex(n,H). The saturation spectrum for a graph H is the set of sizes of H-saturated graphs between sat(n,H) and ex(n,H). In this paper we show that paths, trees with a vertex adjacent to many leaves, and brooms have a gap in the saturation spectrum.
Keywords:
saturation spectrum, tree, saturation number
@article{DMGT_2019_39_1_a12,
author = {Horn, Paul and Gould, Ronald J. and Jacobson, Michael S. and Thomas, Brent J.},
title = {Gaps in the {Saturation} {Spectrum} of {Trees}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {157--170},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a12/}
}
TY - JOUR AU - Horn, Paul AU - Gould, Ronald J. AU - Jacobson, Michael S. AU - Thomas, Brent J. TI - Gaps in the Saturation Spectrum of Trees JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 157 EP - 170 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a12/ LA - en ID - DMGT_2019_39_1_a12 ER -
%0 Journal Article %A Horn, Paul %A Gould, Ronald J. %A Jacobson, Michael S. %A Thomas, Brent J. %T Gaps in the Saturation Spectrum of Trees %J Discussiones Mathematicae. Graph Theory %D 2019 %P 157-170 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a12/ %G en %F DMGT_2019_39_1_a12
Horn, Paul; Gould, Ronald J.; Jacobson, Michael S.; Thomas, Brent J. Gaps in the Saturation Spectrum of Trees. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 157-170. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a12/