Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a10, author = {Yang, Chao and Ren, Han}, title = {New {Formulae} for the {Decycling} {Number} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {125--141}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a10/} }
Yang, Chao; Ren, Han. New Formulae for the Decycling Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 125-141. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a10/
[1] M.O. Albertson and D.M. Berman, The acyclic chromatic number, Congr. Numer. 17 (1976) 51-69.
[2] S. Bau and L.W. Beineke, The decycling number of graphs, Australas. J. Combin. 25 (2002) 285-298.
[3] L.W. Beineke and R.C. Vandell, Decycling graphs, J. Graph Theory 25 (1997) 59-77. doi: 10.1002/(SICI)1097-0118(199705)25:1$h$59::AID-JGT4$i$3.0.CO;2-H
[4] R. Diestel, Graph Theory (Springer Verlag, New York, 1997). doi: 10.4171/OWR/2007/16
[5] P. Erd˝os, Maximum induced trees in graphs, J. Combin. Theory Ser. B 41 (1986) 61-79. doi: 10.1016/0095-8956(86)90028-6
[6] R. Focardi, F.L. Luccio and D. Peleg, Feedback vertex set in hypercubes, Inform. Process. Lett. 76 (2000) 1-5. doi: 10.1016/S0020-0190(00)00127-7
[7] M.L. Furst, J.L. Gross and L.A. Mcgeoch, Finding a maximum genus graph imbedding, J. Assoc. Comput. Mach. 35 (1988) 507-537.
[8] L. Gao, X. Xu, J. Wang, D. Zhu and Y. Yang, The decycling number of generalized Petersen graphs, Discrete Appl. Math. 181 (2015) 297-300. doi: 10.1016/j.dam.2014.09.005
[9] F. Harary, Graph Theory (Academic Press, New York, 1967).
[10] G. Kirchhoff, ¨Uber die Aufl¨osung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Str¨ome gef¨uhrt wird, Ann. Phys. Chem. 72 (1847) 497-508.
[11] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations (Plenum Press, New York, 1972) 85-103.
[12] M.Y. Lien, H.L. Fu and C.H. Shih, The decycling number of Pm × Pn, Discrete Math. Algorithms Appl. 3 (2014) 1-9. doi: 10.1142/S1793830914500335
[13] D.A. Pike and Y. Zou, Decycling cartesian products of two cycles, SIAM J. Discrete Math. 19 (2005) 651-663. doi: 10.1137/S089548010444016X
[14] N. Punnim, The decycling number of cubic graphs, Combinatorial Geometry and Graph Theory 3330 (2005) 141-145. doi: 10.1007/978-3-540-30540-8-16
[15] N. Punnim, The decycling number of cubic planar graphs, in: Proceedings of the 7th China-Japan Conference on Discrete Geometry, Combinatorics and Graph Theory, Lecture Notes in Comput. Sci. 4381 (2007) 149-161. doi: 10.1007/978-3-540-70666-3-16
[16] H. Ren and S. Long, The decycling number and maximum genus of cubic graphs, J. Graph Theory 88 (2018) 375-384. doi: 10.1002/jgt.22218
[17] E. Speckenmeyer, On feedback vertex sets and nonseparating independent sets in cubic graphs, J. Graph Theory 12 (1988) 405-412. doi: 10.1002/jgt.3190120311
[18] E. Wei, Y. Liu and Z. Li, Decycling number of circular graphs, ISORA’09 1 (2009) 387-393.
[19] E. Wei and Y. Li, Decycling number and upper-embeddiblity of generalized Petersen graphs, Acta Math. Sinica (Chin. Ser.) 56 (2013) 211-216.
[20] N.H. Xuong, How to determine the maximum genus of a graph, J. Combin. Theory Ser. B 26 (1979) 226-232. doi: 10.1016/0095-8956(79)90058-3.