Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a1, author = {Chen, Xiaodan and Hao, Guoliang and Xie, Zhihong}, title = {A {Note} on {Roman} {Domination} of {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {13--21}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a1/} }
TY - JOUR AU - Chen, Xiaodan AU - Hao, Guoliang AU - Xie, Zhihong TI - A Note on Roman Domination of Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2019 SP - 13 EP - 21 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a1/ LA - en ID - DMGT_2019_39_1_a1 ER -
Chen, Xiaodan; Hao, Guoliang; Xie, Zhihong. A Note on Roman Domination of Digraphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 13-21. http://geodesic.mathdoc.fr/item/DMGT_2019_39_1_a1/
[1] J.D. Alvarado, S. Dantas and D. Rautenbach, Strong equality of Roman and weak Roman domination in trees, Discrete Appl. Math. 208 (2016) 19-26. doi: 10.1016/j.dam.2016.03.004
[2] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).
[3] Y. Caro and M.A. Henning, Directed domination in oriented graphs, Discrete Appl. Math. 160 (2012) 1053-1063. doi: 10.1016/j.dam.2011.12.027
[4] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575-1586. doi: 10.1137/070699688
[5] M. Chellali and N.J. Rad, Strong equality between the Roman domination and in- dependent Roman domination numbers in trees, Discuss. Math. Graph Theory 33 (2013) 337-346. doi: 10.7151/dmgt.1669
[6] Y. Fu, Dominating set and converse dominating set of a directed graph, Amer. Math. Monthly 75 (1968) 861-863. doi: 10.2307/2314337
[7] X. Fu, Y. Yang and B. Jiang, Roman domination in regular graphs, Discrete Math. 309 (2009) 1528-1537. doi: 10.1016/j.disc.2008.03.006
[8] Š. Gyürki, On the difference of the domination number of a digraph and of its reverse, Discrete Appl. Math. 160 (2012) 1270-1276. doi: 10.1016/j.dam.2011.12.029
[9] G. Hao and J. Qian, On the sum of out-domination number and in-domination number of digraphs, Ars Combin. 119 (2015) 331-337.
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[11] M. Kamaraj and P. Jakkammal, Directed Roman domination in digraphs, submitted.
[12] C.-H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386-1391. doi: 10.1016/j.disc.2011.12.021
[13] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608-619. doi: 10.1007/s10878-012-9482-y
[14] S.M. Sheikholeslami and L. Volkmann, The Roman domination number of a digraph, Acta Univ. Apulensis Math. Inform. 27 (2011) 77-86.
[15] S.M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015) 456-467. doi: 10.1007/s10878-013-9648-2
[16] T.K. Šumenjak, P. Pavlič and A. Tepeh, On the Roman domination in the lexico- graphic product of graphs, Discrete Appl. Math. 160 (2012) 2030-2036. doi: 10.1016/j.dam.2012.04.008
[17] L. Volkmann, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017) 261-272. doi: 10.7151/dmgt.1929
[18] H.-M. Xing, X. Chen and X.-G. Chen, A note on Roman domination in graphs, Discrete Math. 306 (2006) 3338-3340. doi: 10.1016/j.disc.2006.06.018.