Rainbow Disconnection in Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 1007-1021.

Voir la notice de l'article provenant de la source Library of Science

Let G be a nontrivial connected, edge-colored graph. An edge-cut R of G is called a rainbow cut if no two edges in R are colored the same. An edge-coloring of G is a rainbow disconnection coloring if for every two distinct vertices u and v of G, there exists a rainbow cut in G, where u and v belong to different components of G − R. We introduce and study the rainbow disconnection number rd(G) of G, which is defined as the minimum number of colors required of a rainbow disconnection coloring of G. It is shown that the rainbow disconnection number of a nontrivial connected graph G equals the maximum rainbow disconnection number among the blocks of G. It is also shown that for a nontrivial connected graph G of order n, rd(G) = n−1 if and only if G contains at least two vertices of degree n − 1. The rainbow disconnection numbers of all grids Pm □ Pn are determined. Furthermore, it is shown for integers k and n with 1 ≤ k ≤ n − 1 that the minimum size of a connected graph of order n having rainbow disconnection number k is n + k − 2. Other results and a conjecture are also presented.
Keywords: edge coloring, rainbow connection, rainbow disconnection
@article{DMGT_2018_38_4_a9,
     author = {Chartrand, Gary and Devereaux, Stephen and Haynes, Teresa W. and Hedetniemi, Stephen T. and Zhang, Ping},
     title = {Rainbow {Disconnection} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1007--1021},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a9/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Devereaux, Stephen
AU  - Haynes, Teresa W.
AU  - Hedetniemi, Stephen T.
AU  - Zhang, Ping
TI  - Rainbow Disconnection in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 1007
EP  - 1021
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a9/
LA  - en
ID  - DMGT_2018_38_4_a9
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Devereaux, Stephen
%A Haynes, Teresa W.
%A Hedetniemi, Stephen T.
%A Zhang, Ping
%T Rainbow Disconnection in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 1007-1021
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a9/
%G en
%F DMGT_2018_38_4_a9
Chartrand, Gary; Devereaux, Stephen; Haynes, Teresa W.; Hedetniemi, Stephen T.; Zhang, Ping. Rainbow Disconnection in Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 1007-1021. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a9/

[1] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.

[2] P. Elias, A. Feinstein and C.E. Shannon, A note on the maximum flow through a network, IRE Trans. Inform. Theory, IT 2 (1956) 117–119. doi:10.1109/TIT.1956.1056816

[3] L.R. Ford Jr. and D.R. Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (1956) 399–404. doi:10.4153/CJM-1956-045-5

[4] T.W. Haynes, M.A. Henning, P.J. Slater and L.C. van der Merwe, The complementary product of two graphs, Bull. Inst. Combin. Appl. 51 (2007) 21–30.

[5] X.L. Li, Y. Shi and Y.F. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2

[6] X.L. Li and Y.F. Sun, Rainbow Connections of Graphs (Springer, Boston, MA, 2012). doi:10.1007/978-1-4614-3119-0

[7] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3 (1964) 25–30, in Russian.

[8] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150–168. doi:10.2307/2371086