Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_4_a8, author = {Aram, Hamideh and Atapour, Maryam and Sheikholeslami, Seyed Mahmoud}, title = {Eternal {m-Security} {Bondage} {Numbers} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {991--1006}, publisher = {mathdoc}, volume = {38}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a8/} }
TY - JOUR AU - Aram, Hamideh AU - Atapour, Maryam AU - Sheikholeslami, Seyed Mahmoud TI - Eternal m-Security Bondage Numbers in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 991 EP - 1006 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a8/ LA - en ID - DMGT_2018_38_4_a8 ER -
%0 Journal Article %A Aram, Hamideh %A Atapour, Maryam %A Sheikholeslami, Seyed Mahmoud %T Eternal m-Security Bondage Numbers in Graphs %J Discussiones Mathematicae. Graph Theory %D 2018 %P 991-1006 %V 38 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a8/ %G en %F DMGT_2018_38_4_a8
Aram, Hamideh; Atapour, Maryam; Sheikholeslami, Seyed Mahmoud. Eternal m-Security Bondage Numbers in Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 991-1006. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a8/
[1] A.P. Burger, E.J. Cockayne, W.R. Gröndlingh, C.M. Mynhardt, J.H. van Vuuren and W. Winterbach, Infinite order domination in graphs, J. Combin. Math. Combin. Comput. 50 (2004) 179–194.
[2] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47–58. doi:10.1016/0012-365X(90)90348-L
[3] W. Goddard, S.M. Hedetniemi and S.T. Hedetniemi, Eternal security in graphs, J. Combin. Math. Combin. Comput. 52 (2005) 160–180.
[4] B.L. Hartnell and D.F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173–177. doi:10.1016/0012-365X(94)90111-2
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs (New York, Marcel Dekker, Inc., 1998).
[6] J. Huang and J. Ming Xu, The bondage numbers and efficient dominations of vertex-transitive graphs, Discrete Math. 308 (2008) 571–582. doi:10.1016/j.disc.2007.03.027
[7] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225–233. doi:10.2140/pjm.1975.61.225
[8] U. Teschner, The bondage number of a graph G can be much greater than Δ(G), Ars Combin. 43 (1996) 81–87.
[9] U. Teschner, New results about the bondage number of a graph, Discrete Math. 171 (1997) 249–259. doi:10.1016/S0012-365X(96)00007-6
[10] U. Teschner, A counterexample to a conjecture on the bondage number of a graph, Discrete Math. 122 (1993) 393–395. doi:10.1016/0012-365X(93)90317-M
[11] D.B. West, Introduction to Graph Theory (Prentice-Hall, Inc., 2000).
[12] Jun-Ming Xu, On bondage numbers of graphs: a survey with some comments, Int. J. Combin. 2013, article ID 595210, 34 pages. doi:10.1155/2013/595210