Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_4_a7, author = {Wang, Bing and Wu, Jian-Liang and Sun, Lin}, title = {Total {Colorings} of {Embedded} {Graphs} with {No} {3-Cycles} {Adjacent} to {4-Cycles}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {977--989}, publisher = {mathdoc}, volume = {38}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a7/} }
TY - JOUR AU - Wang, Bing AU - Wu, Jian-Liang AU - Sun, Lin TI - Total Colorings of Embedded Graphs with No 3-Cycles Adjacent to 4-Cycles JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 977 EP - 989 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a7/ LA - en ID - DMGT_2018_38_4_a7 ER -
%0 Journal Article %A Wang, Bing %A Wu, Jian-Liang %A Sun, Lin %T Total Colorings of Embedded Graphs with No 3-Cycles Adjacent to 4-Cycles %J Discussiones Mathematicae. Graph Theory %D 2018 %P 977-989 %V 38 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a7/ %G en %F DMGT_2018_38_4_a7
Wang, Bing; Wu, Jian-Liang; Sun, Lin. Total Colorings of Embedded Graphs with No 3-Cycles Adjacent to 4-Cycles. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 977-989. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a7/
[1] M. Behzad, Graphs and Their Chromatic Numbers (Ph.D. Thesis, Michigan State University, 1965).
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press Ltd., London, 1976).
[3] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180–185.
[4] O.V. Borodin, Coupled colourings of graphs on a plane, Metody Diskret. Anal. 45 (1987) 21–27, in Russian.
[5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997) 184–204. doi:10.1006/jctb.1997.1780
[6] O.V. Borodin A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53–59. doi:10.1002/(SICI)1097-0118(199709)26:1h53::AID-JGT6i3.0.CO;2-G
[7] G.J. Chang, J. Hou and N. Roussel, Local condition for planar graphs of maximum degree 7 to be 8- totally colorable, Discrete Appl. Math. 159 (2011) 760–768. doi:10.1016/j.dam.2011.01.001
[8] D. Du, L. Shen and Y. Wang, Planar graphs with maximum degree 8 and without adjacent triangles are 9- totally-colorable, Discrete Appl. Math. 157 (2009) 2778–2784. doi:10.1016/j.dam.2009.02.011
[9] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley Interscience, 1995).
[10] Ł. Kowalik, J.-S. Sereni and R. Škrekovski, Total-colorings of plane graphs with maximum degree nine, SIAM J. Discrete Math. 22 (2008) 1462–1479. doi:10.1137/070688389
[11] L. Shen and Y.Q. Wang, Total colorings of planar graphs with maximum degree atleast 8, Sci. China Ser A: Math. 52 (2009) 1733–1742. doi:10.1007/s11425-008-0155-3
[12] L. Shen and Y. Wang, On the 7 total colorability of planar graphs with maximum degree 6 and without 4- cycles, Graphs Combin. 25 (2009) 401–407. doi:10.1007/s00373-009-0843-y
[13] A.V. Kostochka, The total coloring of a multigraph with maximal degree 4, Discrete Math. 17 (1977) 161–163. doi:10.1016/0012-365X(77)90146-7
[14] A.V. Kostochka, An analogue of Shannon’s estimate for complete colorings, Metody Diskret. Anal. 30 (1977) 13–22, in Russian.
[15] A.V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996) 199–214. doi:10.1016/0012-365X(95)00286-6
[16] B. Liu, J.F. Hou, J.L. Wu and G.Z. Liu, Total colorings and list total colorings of planar graphs without intersecting 4- cycles, Discrete Math. 309 (2009) 6035–6043. doi:10.1016/j.disc.2009.05.006
[17] D.P. Sanders and Y. Zhao, On total 9- coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67–73. doi:10.1002/(SICI)1097-0118(199905)31:1h67::AID-JGT6i3.0.CO;2-C
[18] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117–134, in Russian.
[19] B. Wang and J.-L. Wu, Total coloring of planar graphs with maximum degree seven, Inform. Process. Lett. 111 (2011) 1019–1021. doi:10.1016/j.ipl.2011.07.012
[20] P. Wang and J.-L. Wu, A note on total colorings of planar graphs without 4- cycles, Discuss. Math. Graph Theory 24 (2004) 125–135. doi:10.7151/dmgt.1219
[21] H.J. Wang, L.D. Wu, W.L. Wu, P.M. Pardalos and J.L. Wu, Minimum total coloring of planar graph, J. Global Optim. 60 (2014) 777–791. doi:10.1007/s10898-013-0138-y
[22] H.J. Wang, B. Liu, J.L. Wu and G.Z. Liu, Total coloring of embedded graphs with maximum degree at least seven, Theoret. Comput. Sci. 518 (2014) 1–9. doi:10.1016/j.tcs.2013.04.030
[23] H.J. Wang, B. Liu, J.L. Wu and B. Wang, Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic, Sci. China Math. 57 (2014) 211–220. doi:10.1007/s11425-013-4576-2
[24] J.L. Wu and P. Wang, List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Math. 308 (2008) 6210–6215. doi:10.1016/j.disc.2007.11.044
[25] W.F. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph Theory 54 (2007) 91–102. doi:10.1002/jgt.20195