Total Colorings of Embedded Graphs with No 3-Cycles Adjacent to 4-Cycles
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 977-989

Voir la notice de l'article provenant de la source Library of Science

A total-k-coloring of a graph G is a coloring of V ∪ E using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number χ′′(G) of G is the smallest integer k such that G has a total-k-coloring. Let G be a graph embedded in a surface of Euler characteristic ε ≥ 0. If G contains no 3-cycles adjacent to 4-cycles, that is, no 3-cycle has a common edge with a 4-cycle, then χ′′(G) ≤ max8, Δ+1.
Keywords: total coloring, embedded graph, cycle
@article{DMGT_2018_38_4_a7,
     author = {Wang, Bing and Wu, Jian-Liang and Sun, Lin},
     title = {Total {Colorings} of {Embedded} {Graphs} with {No} {3-Cycles} {Adjacent} to {4-Cycles}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {977--989},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a7/}
}
TY  - JOUR
AU  - Wang, Bing
AU  - Wu, Jian-Liang
AU  - Sun, Lin
TI  - Total Colorings of Embedded Graphs with No 3-Cycles Adjacent to 4-Cycles
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 977
EP  - 989
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a7/
LA  - en
ID  - DMGT_2018_38_4_a7
ER  - 
%0 Journal Article
%A Wang, Bing
%A Wu, Jian-Liang
%A Sun, Lin
%T Total Colorings of Embedded Graphs with No 3-Cycles Adjacent to 4-Cycles
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 977-989
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a7/
%G en
%F DMGT_2018_38_4_a7
Wang, Bing; Wu, Jian-Liang; Sun, Lin. Total Colorings of Embedded Graphs with No 3-Cycles Adjacent to 4-Cycles. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 977-989. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a7/