Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_4_a5, author = {Li, Hengzhe and Wu, Baoyindureng and Yang, Weihua}, title = {Making a {Dominating} {Set} of a {Graph} {Connected}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {947--962}, publisher = {mathdoc}, volume = {38}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a5/} }
TY - JOUR AU - Li, Hengzhe AU - Wu, Baoyindureng AU - Yang, Weihua TI - Making a Dominating Set of a Graph Connected JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 947 EP - 962 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a5/ LA - en ID - DMGT_2018_38_4_a5 ER -
Li, Hengzhe; Wu, Baoyindureng; Yang, Weihua. Making a Dominating Set of a Graph Connected. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 947-962. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a5/
[1] L. Arseneau, A. Finbow, B. Hartnell, A. Hynick, D. MacLean and L. O’Sullivan, On minimal connected dominating sets, J. Combin. Math. Combin. Comput. 24 (1997) 185–191.
[2] C. Bo and B. Liu, Some inequalities about the connected domination number, Discrete Math. 159 (1996) 241–245. doi:10.1016/0012-365X(95)00088-E
[3] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, London, 2008).
[4] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: A survey, Graphs Combin. 28 (2012) 1–55. doi:10.1007/s00373-011-1040-3
[5] C.J. Colbourn and L.K. Stewart, Permutaion graphs: Connected domination and Steiner trees, Discrete Math. 86 (1990) 179–189. doi:10.1016/0012-365X(90)90359-P
[6] D.-Z. Du and P.-J. Wan, Connected Dominating Set: Theory and Applications (Springer, New York, 2013). doi:10.1007/978-1-4614-5242-3
[7] Y.L. Du and H.W. Du, A new bound on maximum independent set and minimum connected dominating set in unit disk graphs, J. Comb. Optim. 30 (2015) 1173–1179. doi:10.1007/s10878-013-9690-0
[8] P. Duchet and H. Meyniel, On Hadwiger’s number and the stability number, North-Holland Math. Studies 62 (1982) 71–73. doi:10.1016/S0304-0208(08)73549-7
[9] S. Guha and S. Khuller, Approximation algorithms for connected dominating sets, Algorithmica 20 (1998) 374–387. doi:10.1007/PL00009201
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: The Theory (Marcel Dekker, New York, 1997).
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Selected Topics (Marcel Dekker, New York, 1997).
[12] M. Li, P.-J. Wan and F. Yao, Tighter approximation bounds for minimum CDS in unit disk graphs, Algorithmica 61 (2011) 1000–1021. doi:10.1007/s00453-011-9512-7
[13] X. Li and Z. Zhang, Two algorithms for minimum 2- connected r-hop dominating set, Inform. Process. Lett. 110 (2010) 986–991. doi:10.1016/j.ipl.2010.08.008
[14] M. Moscarini, Doubly chordal graphs, Steiner trees, and connected domination, Networks 23 (1993) 59–69. doi:10.1002/net.3230230108
[15] E. Sampathkumar and H.B. Walikar, The connected domination number of a graphs, J. Math. Phys. Sci. 13 (1979) 607–613.
[16] E. Vigoda, Lecture Notes on a Parallel Algorithm for Generating a Maximal Independent Set, Georgia Institute of Technology, last updated for 7530 – Randomized Algorithms, Spring 2010.
[17] P.-J.Wan, L.Wang and F. Yao, Two-phased approximation algorithms for minimum CDS in wireless ad hoc networks, in: IEEE ICDCS (2008) 337–344. doi:10.1109/ICDCS.2008.15
[18] K. White, M. Farber and W.R. Pulleyblank, Steiner trees, connected domination and strongly chordal graphs, Networks 15 (1985) 109–124. doi:10.1002/net.3230150109
[19] W. Wu, H. Du, X. Jia, Y. Li and S. Huang, Minimum connected dominating sets and maximal independent sets in unit disk graphs, Theoret. Comput. Sci. 352 (2006) 1–7. doi:10.1016/j.tcs.2005.08.037
[20] W. Wu, X. Gao, P.M. Pardalos and D.-Z. Du, Wireless networking, dominating and packing, Optim. Lett. 4 (2010) 347–358. doi:10.1007/s11590-009-0151-8