The Largest Component in Critical Random Intersection Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 921-946

Voir la notice de l'article provenant de la source Library of Science

In this paper, through the coupling and martingale method, we prove the order of the largest component in some critical random intersection graphs is n^2/3 with high probability and the width of scaling window around the critical probability is n^−1/3; while in some graphs, the order of the largest component and the width of the scaling window around the critical probability depend on the parameters in the corresponding definition of random intersection graphs. Our results show that there is still an “inside” phase transition in critical random intersection graphs.
Keywords: critical random intersection graph, largest component, scaling window
@article{DMGT_2018_38_4_a4,
     author = {Wang, Bin and Wang, Longmin and Xiang, Kainan},
     title = {The {Largest} {Component} in {Critical} {Random} {Intersection} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {921--946},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/}
}
TY  - JOUR
AU  - Wang, Bin
AU  - Wang, Longmin
AU  - Xiang, Kainan
TI  - The Largest Component in Critical Random Intersection Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 921
EP  - 946
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/
LA  - en
ID  - DMGT_2018_38_4_a4
ER  - 
%0 Journal Article
%A Wang, Bin
%A Wang, Longmin
%A Xiang, Kainan
%T The Largest Component in Critical Random Intersection Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 921-946
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/
%G en
%F DMGT_2018_38_4_a4
Wang, Bin; Wang, Longmin; Xiang, Kainan. The Largest Component in Critical Random Intersection Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 921-946. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/