The Largest Component in Critical Random Intersection Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 921-946
Voir la notice de l'article provenant de la source Library of Science
In this paper, through the coupling and martingale method, we prove the order of the largest component in some critical random intersection graphs is n^2/3 with high probability and the width of scaling window around the critical probability is n^−1/3; while in some graphs, the order of the largest component and the width of the scaling window around the critical probability depend on the parameters in the corresponding definition of random intersection graphs. Our results show that there is still an “inside” phase transition in critical random intersection graphs.
Keywords:
critical random intersection graph, largest component, scaling window
@article{DMGT_2018_38_4_a4,
author = {Wang, Bin and Wang, Longmin and Xiang, Kainan},
title = {The {Largest} {Component} in {Critical} {Random} {Intersection} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {921--946},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/}
}
TY - JOUR AU - Wang, Bin AU - Wang, Longmin AU - Xiang, Kainan TI - The Largest Component in Critical Random Intersection Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 921 EP - 946 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/ LA - en ID - DMGT_2018_38_4_a4 ER -
Wang, Bin; Wang, Longmin; Xiang, Kainan. The Largest Component in Critical Random Intersection Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 921-946. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/