Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_4_a4, author = {Wang, Bin and Wang, Longmin and Xiang, Kainan}, title = {The {Largest} {Component} in {Critical} {Random} {Intersection} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {921--946}, publisher = {mathdoc}, volume = {38}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/} }
TY - JOUR AU - Wang, Bin AU - Wang, Longmin AU - Xiang, Kainan TI - The Largest Component in Critical Random Intersection Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 921 EP - 946 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/ LA - en ID - DMGT_2018_38_4_a4 ER -
Wang, Bin; Wang, Longmin; Xiang, Kainan. The Largest Component in Critical Random Intersection Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 921-946. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a4/
[1] M. Behrisch, Component evolution in random intersection graphs, Electron. J. Combin. 14 (2007) #R17.
[2] R. Durrett, Probability: Theory and Examples, Fourth Edition (Cambridge University Press, New York, 2010). doi:10.1017/CBO9780511779398
[3] Ch. Efthymiou and P.G. Spirakis, Sharp thresholds for Hamiltonicity in random intersection graphs, Theoret. Comput. Sci. 411 (2010) 3714–3730. doi:10.1016/j.tcs.2010.06.022
[4] J.A. Fill, E.R. Scheinerman and K.B. Singer-Cohen, Random intersection graphs when m = ω( n ): An equivalence theorem relating the evolution of G ( n,m, p ) and G ( n, p ) models, Random Structures Algorithms 16 (2000) 156–176. doi:10.1002/(SICI)1098-2418(200003)16:2h156::AID-RSA3i3.0.CO;2-H
[5] S. Janson, T. Łuczak and A. Ruciński, Random Graphs (John Wiley & Sons, New York, 2000). doi:10.1002/9781118032718
[6] M. Karoński, E.R. Scheinerman and K.B. Singer-Cohen, On random intersection graphs: The subgraph problem, Combin. Probab. Comput. 8 (1999) 131–159. doi:10.1017/S0963548398003459
[7] A.N. Lagerås and M. Lindholm, A note on the component structure in random intersection graphs with tunable clustering, Electron. J. Combin. 15 (2008) #N10.
[8] A. Nachmias and Y. Peres, Component sizes of the random graph outside the scaling window, ALEA Lat. Am. J. Probab. Math. Stat. 3 (2007) 133–142.
[9] A. Nachmias and Y. Peres, Critical random graphs: Diameter and mixing time, Ann. Probab. 36 (2008) 1267–1286. doi:10.1214/07-AOP358
[10] A. Nachmias and Y. Peres, The critical random graph, with martingales, Israel J. Math. 176 (2010) 29–41. doi:10.1007/s11856-010-0019-8
[11] A. Nachmias and Y. Peres, Critical percolation on random regular graphs, Random Structures Algorithms 36 (2010) 111–148. doi:10.1002/rsa.20277
[12] K. Rybarczyk, Equivalence of a random intersection graph and G (n, p), Random Structures Algorithms 38 (2011) 205–234. doi:10.1002/rsa.20356
[13] K. Rybarczyk, Sharp threshold functions for random intersection graphs via a coupling method, Electron. J. Combin. 18 (2011) #P36.
[14] D. Stark, The vertex degree distribution of random intersection graphs, Random Structures Algorithms 24 (2004) 249–258. doi:10.1002/rsa.20005
[15] K.B.Singer, Random Intersection Graphs (Ph.D. Thesis, John Hopkins Univresity, 1995).