Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_4_a3, author = {Czap, J\'ulius and Jendro\v{l}, Stanislav and Valiska, Juraj}, title = {Conflict-Free {Connections} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {911--920}, publisher = {mathdoc}, volume = {38}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/} }
TY - JOUR AU - Czap, Július AU - Jendroľ, Stanislav AU - Valiska, Juraj TI - Conflict-Free Connections of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 911 EP - 920 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/ LA - en ID - DMGT_2018_38_4_a3 ER -
Czap, Július; Jendroľ, Stanislav; Valiska, Juraj. Conflict-Free Connections of Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 911-920. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/
[1] S.A. van Aardt, C. Brause, A.P. Burger, M. Frick, A. Kemnitz and I. Schiermeyer, Proper connection and size of graphs, Discrete Math. 340 (2017) 2673–2677. doi:10.1016/j.disc.2016.09.021
[2] E. Andrews, C. Lumduanhom, E. Laforge and P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016) 189–207.
[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Zs. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550–2560. doi:10.1016/j.disc.2011.09.003
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
[5] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Sixth Edition (Boca Raton, CRC Press, 2016).
[6] P. Cheilaris, B. Keszegh and D. Pálvöolgyi, Unique-maximum and conflict-free coloring for hypergraphs and tree graphs, SIAM J. Discrete Math. 27 (2013) 1775–1787. doi:10.1137/120880471
[7] P. Cheilaris and G. Tóth, Graph unique-maximum and conflict-free colorings, J. Discrete Algorithms 9 (2011) 241–251. doi:10.1016/j.jda.2011.03.005
[8] I. Fabrici and F. Göring, Unique-maximum coloring of plane graphs, Discuss. Math. Graph Theory 36 (2016) 95–102. doi:10.7151/dmgt.1846
[9] R. Gu, X. Li and Z. Qin, Proper connection number of random graphs, Theoret. Comput. Sci. 609 (2016) 336–343. doi:10.1016/j.tcs.2015.10.017
[10] F. Huang, X. Li and S. Wang, Proper connection number and 2- proper connection number of a graph . arxiv.org/pdf/1507.01426v2.pdf
[11] N. Kamčev, M. Krivelevich and B. Sudakov, Some remarks on rainbow connectivity, J. Graph Theory 83 (2016) 372–383. doi:10.1002/jgt.22003
[12] A. Kemnitz, J. Przybyło, I. Schiermeyer and M. Wózniak, Rainbow connection in sparse graphs, Discuss. Math. Graph Theory 33 (2013) 181–192. doi:10.7151/dmgt.1640
[13] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313–320. doi:10.7151/dmgt.1547
[14] X. Li, M. Liu and I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory 33 (2013) 603–611. doi:10.7151/dmgt.1692
[15] X. Li and C. Magnant, Properly colored notions of connectivity — a dynamic survey, Theory and Applications of Graphs 0, Article 2 (2015). doi:10.20429/tag.2015.000102
[16] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: a survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2
[17] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Mathematics, Berlin, Springer, 2012).
[18] K. Makino, Y. Uno and T. Ibaraki, On minimum edge ranking spanning trees, J. Algorithms 38 (2001) 411–437. doi:10.1006/jagm.2000.1143
[19] R. Melville and W. Goddard, Coloring graphs to produce properly colored walks, Graphs Combin. 33 (2017) 1271–1281. doi:10.1007/S00373-017-1843-y
[20] J. Pach and G. Tardos, Conflict-free colourings of graphs and hypergraphs, Comb. Probab. Comput. 18 (2009) 819–834. doi:10.1017/S0963548309990290
[21] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, Lecture Notes in Comput. Sci. 5874 (2009) 432–437. doi:10.1007/978-3-642-10217-2_42
[22] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25–30.
[23] D.B. West, Introduction to Graph Theory, Second Edition (New Delhi, Prentice-Hall, 2005).