Conflict-Free Connections of Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 911-920
Voir la notice de l'article provenant de la source Library of Science
An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. In this paper the question for the smallest number of colors needed for a coloring of edges of G in order to make it conflict-free connected is investigated. We show that the answer is easy for 2-edge-connected graphs and very difficult for other connected graphs, including trees.
Keywords:
edge-coloring, conflict-free connection, 2-edge-connected graph, tree
@article{DMGT_2018_38_4_a3,
author = {Czap, J\'ulius and Jendro\v{l}, Stanislav and Valiska, Juraj},
title = {Conflict-Free {Connections} of {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {911--920},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/}
}
TY - JOUR AU - Czap, Július AU - Jendroľ, Stanislav AU - Valiska, Juraj TI - Conflict-Free Connections of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 911 EP - 920 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/ LA - en ID - DMGT_2018_38_4_a3 ER -
Czap, Július; Jendroľ, Stanislav; Valiska, Juraj. Conflict-Free Connections of Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 911-920. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/