Conflict-Free Connections of Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 911-920

Voir la notice de l'article provenant de la source Library of Science

An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. In this paper the question for the smallest number of colors needed for a coloring of edges of G in order to make it conflict-free connected is investigated. We show that the answer is easy for 2-edge-connected graphs and very difficult for other connected graphs, including trees.
Keywords: edge-coloring, conflict-free connection, 2-edge-connected graph, tree
@article{DMGT_2018_38_4_a3,
     author = {Czap, J\'ulius and Jendro\v{l}, Stanislav and Valiska, Juraj},
     title = {Conflict-Free {Connections} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {911--920},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/}
}
TY  - JOUR
AU  - Czap, Július
AU  - Jendroľ, Stanislav
AU  - Valiska, Juraj
TI  - Conflict-Free Connections of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 911
EP  - 920
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/
LA  - en
ID  - DMGT_2018_38_4_a3
ER  - 
%0 Journal Article
%A Czap, Július
%A Jendroľ, Stanislav
%A Valiska, Juraj
%T Conflict-Free Connections of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 911-920
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/
%G en
%F DMGT_2018_38_4_a3
Czap, Július; Jendroľ, Stanislav; Valiska, Juraj. Conflict-Free Connections of Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 911-920. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a3/