Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_4_a10, author = {Sun, Yuefang and Jin, Zemin and Tu, Jianhua}, title = {Rainbow {Total-Coloring} of {Complementary} {Graphs} and {Erd\H{o}s-Gallai} {Type} {Problem} {For} {The} {Rainbow} {Total-Connection} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1023--1036}, publisher = {mathdoc}, volume = {38}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a10/} }
TY - JOUR AU - Sun, Yuefang AU - Jin, Zemin AU - Tu, Jianhua TI - Rainbow Total-Coloring of Complementary Graphs and Erdős-Gallai Type Problem For The Rainbow Total-Connection Number JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 1023 EP - 1036 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a10/ LA - en ID - DMGT_2018_38_4_a10 ER -
%0 Journal Article %A Sun, Yuefang %A Jin, Zemin %A Tu, Jianhua %T Rainbow Total-Coloring of Complementary Graphs and Erdős-Gallai Type Problem For The Rainbow Total-Connection Number %J Discussiones Mathematicae. Graph Theory %D 2018 %P 1023-1036 %V 38 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a10/ %G en %F DMGT_2018_38_4_a10
Sun, Yuefang; Jin, Zemin; Tu, Jianhua. Rainbow Total-Coloring of Complementary Graphs and Erdős-Gallai Type Problem For The Rainbow Total-Connection Number. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 4, pp. 1023-1036. http://geodesic.mathdoc.fr/item/DMGT_2018_38_4_a10/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244 (Springer, Berlin, 2008).
[2] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2011) 330–347. doi:10.1007/s10878-009-9250-9
[3] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54(2) (2009) 75–81. doi:10.1002/net.20296
[5] L. Chen, B. Huo and Y. Ma, Hardness results for total rainbow connection of graphs, Discuss. Math. Graph Theory 36 (2016) 355–362. doi:10.7151/dmgt.1856
[6] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531–4535. doi:10.1016/j.tcs.2011.04.032
[7] X. Huang, H. Li, X. Li and Y. Sun, Oriented diameter and rainbow connection number of a graph, Discrete Math. Theor. Comput. Sci. 16(3) (2014) 51–60.
[8] X. Huang, X. Li, Y. Shi, J. Yue and Y. Zhao, Rainbow connections for outerplanar graphs with diameter 2 and 3, Appl. Math. Comput. 242 (2014) 277–280. doi:10.1016/j.amc.2014.05.066
[9] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313–320. doi:10.7151/dmgt.1547
[10] M. Krivelevich and R. Yuster, The rainbow connection of a graph is ( at most ) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191. doi:10.1002/jgt.20418
[11] H. Li, X. Li, Y. Sun and Y. Zhao, Note on minimally d-rainbow connected graphs, Graphs Combin. 30 (2014) 949–955. doi:/10.1007/s00373-013-1309-9
[12] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2
[13] X. Li and Y. Sun, Rainbow connection numbers of line graphs, Ars Combin. 100 (2011) 449–463.
[14] X. Li and Y. Sun, Rainbow connection numbers of complementary graphs, Util. Math. 86 (2011) 23–31.
[15] X. Li and Y. Sun, Upper bounds for the rainbow connection numbers of line graphs, Graphs Combin. 28 (2012) 251–263. doi:10.1007/s00373-011-1034-1
[16] X. Li and Y. Sun, Rainbow Connections of Graphs, SpringerBriefs in Math. (Springer, New York, 2012). doi:10.1007/978-1-4614-3119-0
[17] X. Li and Y. Sun, On the strong rainbow connection of a graph, Bull. Malays. Math. Sci. Soc. 36 (2013) 299–311.
[18] H. Liu, Â. Mestre and T. Sousa, Total rainbow k-connection in graphs, Discrete Appl. Math. 174 (2014) 92–101. doi:10.1016/j.dam.2014.04.012
[19] Y. Ma, Total rainbow connection number and complementary graph, Results Math. 70 (2016) 173–182. doi:10.1007/s00025-015-0469-8
[20] Y. Sun, On two variants of rainbow connection, WSEAS Trans. Math. 12 (2013) 266–276.
[21] Y. Sun, On rainbow total-coloring of a graph, Discrete Appl. Math. 194 (2015) 171–177. doi:10.1016/j.dam.2015.05.012
[22] Y. Sun, On the total rainbow connection of a graph, Acta Math. Appl. Sin. Engl. Ser., accepted.
[23] Y. Sun, Z. Jin and F. Li, On total rainbow k-connected graphs, Appl. Math. Comput. 311 (2017) 223–227. doi:10.1016/j.amc.2017.05.020
[24] K. Uchizawa, T. Aoki, T. Ito, A. Suzuki and X. Zhou, On the rainbow connectivity of graphs: complexity and FPT algorithms, Algorithmica 67 (2013) 161–179. doi:10.1007/s00453-012-9689-4