Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_3_a8, author = {Boudabbous, Youssef and Ille, Pierre}, title = {The {{\ensuremath{-}2,\ensuremath{-}1}-Selfdual} and {Decomposable} {Tournaments}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {743--789}, publisher = {mathdoc}, volume = {38}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a8/} }
TY - JOUR AU - Boudabbous, Youssef AU - Ille, Pierre TI - The {−2,−1}-Selfdual and Decomposable Tournaments JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 743 EP - 789 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a8/ LA - en ID - DMGT_2018_38_3_a8 ER -
Boudabbous, Youssef; Ille, Pierre. The {−2,−1}-Selfdual and Decomposable Tournaments. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 743-789. http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a8/
[1] M. Achour, Y. Boudabbous and A. Boussaïri, The {−3} -reconstruction and the {−3} -self duality of tournaments, Ars Combin. 122 (2015) 355–377.
[2] M. Basso-Gerbelli and P. Ille, La reconstruction des relations définies par interdits, C. R. Acad. Sci. Paris, Sér. I Math. 316 (1993) 1229–1234.
[3] H. Belkhechine, I. Boudabbous and J. Dammak, Morphologie des tournois (−1)- critiques, C. R. Acad. Sci. Paris, Sér. I Math. 345 (2007) 663–666. doi:10.1016/j.crma.2007.11.006
[4] A. Bondy and R.L. Hemminger, Graph reconstruction, a survey, J. Graph Theory 1 (1977) 227–268. doi:10.1002/jgt.3190010306
[5] H. Bouchaala, Sur la répartition des diamants dans un tournoi, C. R. Acad. Sci. Paris, Sér. I Math. 338 (2004) 109–112. doi:10.1016/j.crma.2003.11.018
[6] H. Bouchaala and Y. Boudabbous, La {− k } -autodualité des sommes lexicographiques finies de tournois suivant un 3 -cycle ou un tournoi critique, Ars Combin. 81 (2006) 33–64.
[7] Y. Boudabbous, J. Dammak and P. Ille, Indecomposability and duality of tournaments, Discrete Math. 223 (2000) 55–82. doi:10.1016/S0012-365X(00)00040-6
[8] Y. Boudabbous and A. Boussaïri, Reconstruction des tournois et dualité, C. R. Acad. Sci. Paris, Sér. I Math. 320 (1995) 397–400.
[9] Y. Boudabbous and P. Ille, Indecomposability graph and critical vertices of an indecomposable graph, Discrete Math. 309 (2009) 2839–2846. doi:10.1016/j.disc.2008.07.015
[10] Y. Boudabbous and P. Ille, Cut-primitive directed graphs versus clan-primitive directed graphs, Adv. Pure Appl. Math. 1 (2010) 223–231. doi:10.1515/apam.2010.013
[11] A. Boussaïri, Décomposabilité, dualité et groupes finis en théorie des relations (Ph.D. Thesis, Université Claude Bernard, Lyon I, 1995).
[12] A. Boussaïri, P. Ille, G. Lopez and S. Thomassé, The C3-structure of the tournaments, Discrete Math. 277 (2004) 29–43. doi:10.1016/S0012-365X(03)00244-9
[13] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, in: Trees in Algebra and Programming, S. Tison (Ed(s)), (Springer, 1994) 68–84. doi:10.1007/BFb0017474
[14] A. Ehrenfeucht, T. Harju and G. Rozenberg, The Theory of 2-Structures, A Framework for Decomposition and Transformation of Graphs (World Scientific, 1999). doi:10.1142/4197
[15] W.J.R. Eplett, Self-converse tournaments, Canad. Math. Bull. 22 (1979) 23–27. doi:10.4153/CMB-1979-004-6
[16] R. Fraïssé, Theory of Relations, Revised Edition (North-Holland, 2000).
[17] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25–66. doi:10.1007/BF02020961
[18] F. Harary and E. Palmer, On the problem of reconstructing a tournament from subtournaments, Monatsh. Math. 71 (1967) 14–23. doi:10.1007/BF01299955
[19] P. Ille, La reconstruction des relations binaires, C. R. Acad. Sci. Paris, Sér. I Math. 306 (1988) 635–638.
[20] P. Ille, Recognition problem in reconstruction for decomposable relations, in: Finite and Infinite Combinatorics in Sets and Logic, B. Sands, N. Sauer and R. Woodrow (Ed(s)), (Kluwer Academic Publishers, 1993) 189–198. doi:10.1007/978-94-011-2080-7_13
[21] W.M. Kantor, Automorphism groups of designs, Math. Z. 109 (1969) 246–252. doi:10.1007/BF01111409
[22] G. Lopez, Deux résultats concernant la détermination d’une relation par les types d’isomorphie de ses restrictions, C. R. Acad. Sci. Paris, Sér. A-B 274 (1972) 1525–1528.
[23] G. Lopez, L’indéformabilité des relations et multirelations binaires, Z. Math. Logik Grundlag. Math. 24 (1978) 303–317. doi:10.1002/malq.19780241905
[24] G. Lopez and C. Rauzy, Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and ( n − 1), II, Z. Math. Logik Grundlag. Math. 38 (1992) 157–168. doi:10.1002/malq.19920380111
[25] F. Maffray and M. Preissmann, A translation of Tibor Gallai’s paper: Transitiv orientierbare Graphen, in: Perfect Graphs, J.L. Ramirez-Alfonsin and B.A. Reed (Ed(s)), (Wiley, 2001) 25–66.
[26] J.W. Moon, Tournaments whose subtournaments are irreducible or transitive, Canad. Math. Bull. 22 (1979) 75–79. doi:10.4153/CMB-1979-010-7
[27] M. Pouzet, Application d’une propriété combinatoire des parties d’un ensemble aux groupes et aux relations, Math. Z. 150 (1976) 117–134. doi:10.1007/BF01215230
[28] K.B. Reid and C. Thomassen, Strongly self-complementarity and hereditarily isomorphic tournaments, Monatsh. Math. 81 (1976) 291–304. doi:10.1007/BF01387756
[29] M.Y. Sayar, Partially critical indecomposable tournaments and partially critical supports, Contrib. Discrete Math. 6 (2011) 52–76.
[30] J.H. Schmerl and W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191–205. doi:10.1016/0012-365X(93)90516-V
[31] J. Spinrad, P 4 -trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263–291. doi:10.1016/0166-218X(92)90180-I
[32] P.K. Stockmeyer, The falsity of the reconstruction conjecture for tournaments, J. Graph Theory 1 (1977) 19–25. doi:10.1002/jgt.3190010108
[33] S.M. Ulam, A Collection of Mathematical Problems (Intersciences Publishers, 1960).