Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_3_a13, author = {Stani\'c, Zoran}, title = {Perturbations in a {Signed} {Graph} and its {Index}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {841--852}, publisher = {mathdoc}, volume = {38}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a13/} }
Stanić, Zoran. Perturbations in a Signed Graph and its Index. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 841-852. http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a13/
[1] F. Belardo, E.M. Li Marzi and S.K. Simić, Combinatorial approach for computing the characteristic polynomial of a matrix, Linear Algebra Appl. 433 (2010) 1513–1523. doi:10.1016/j.laa.2010.05.010
[2] F. Belardo and P. Petecki, Spectral characterizations of signed lollipop graphs, Linear Algebra Appl. 480 (2015) 144–167. doi:10.1016/j.laa.2015.04.022
[3] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs — Theory and Application, 3rd Edition (Johann Ambrosius Barth Verlag, Heidelberg–Leipzig, 1995).
[4] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, Cambridge, 2010).
[5] W.H. Haemars and E. Spence, Enumeration of cospectral graphs, European J. Combin. 25 (2004) 199–211. doi:10.1016/S0195-6698(03)00100-8
[6] T. Koledin and Z. Stanić, Connected signed graphs of fixed order, size, and number of negative edges with maximal index, Linear Multilinear Algebra 65 (2017) 2187–2198. doi:10.1080/03081087.2016.1265480
[7] B.D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014) 94–112. doi:10.1016/j.jsc.2013.09.003
[8] G. Pólya, Kombinatorische Anzahlbestimmungen f ü r Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145–254. doi:10.1007/BF02546665
[9] S.K. Simić and Z. Stanić, Polynomial reconstruction of signed graphs, Linear Algebra Appl. 501 (2016) 390–408. doi:10.1016/j.laa.2016.03.036
[10] Z. Stanić, Inequalities for Graph Eigenvalues (Cambridge University Press, Cambridge, 2015).