Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_3_a11, author = {Kang, Liying and Shan, Erfang}, title = {Trees with {Unique} {Least} {Central} {Subtrees}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {811--828}, publisher = {mathdoc}, volume = {38}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a11/} }
Kang, Liying; Shan, Erfang. Trees with Unique Least Central Subtrees. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 811-828. http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a11/
[1] S.P. Avann, Metric ternary distributive semi-latties, Proc. Amer. Math. Soc. 12 (1961) 407–414. doi:10.1090/S0002-9939-1961-0125807-5
[2] H. Bielak and M. Pańczyk, A self-stabilizing algorithm for finding weighted centroid in trees, Ann. Univ. Mariae Curie-Sk lodowska Sect. AI-Inform. 12(2) (2012) 27–37. doi:10.2478/v10065-012-0035-x
[3] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[4] M.L. Brandeau and S.S. Chiu, An overview of representative problem in location research, Management Science 35 (1989) 645–674. doi:10.1287/mnsc.35.6.645
[5] S.L. Hakimi, Optimal locations of switching centers and the absolute centers and medians of a graph, Oper. Res. 12 (1964) 450–459. doi:10.1287/opre.12.3.450
[6] M. Hamina and M. Peltola, Least central subtrees, center, and centroid of a tree, Networks 57 (2011) 328–332. doi:10.1002/net.20402
[7] O. Kariv and S.L. Hakimi, An algorithm approach to network location problems . II: The p-medians, SIAM J. Appl. Math. 37 (1979) 539–560. doi:10.1137/0137041
[8] H.M. Mulder, The interval function of a graph, in: Mathematical Centre Tracts 132 (Mathematisch Centrum, Amsterdam, 1980).
[9] L. Nebeský, Median graphs, Comment. Math. Univ. Carolin. 12 (1971) 317–325.
[10] J. Nieminen and M. Peltola, The subtree center of a tree, Networks 34 (1999) 272–278. doi:10.1002/(SICI)1097-0037(199912)34:4h272::AID-NET6i3.0.CO;2-C
[11] K.B. Ried, Centroids to center in trees, Networks 21 (1991) 11–17. doi:10.1002/net.3230210103
[12] C. Smart and P.J. Slater, Center, median, and centroid subgraphs, Networks 34 (1999) 303–311. doi:10.1002/(SICI)1097-0037(199912)34:4h303::AID-NET10i3.0.CO;2-#
[13] J. Spoerhase and H.-C. Wirth, ( r, p )- Centroid problems on paths and trees, Theoret. Comput. Sci. 410 (2009) 5128–5137. doi:10.1016/j.tcs.2009.08.020
[14] A. Tamir, Improved complexity bounds for center location problems on networks by using dynamic data structures, SIAM J. Discrete Math. 1 (1988) 377–396. doi:10.1137/0401038
[15] B.C. Tansel, R.L. Francis and T.J. Lowe, Location on networks: a survey—Part I: the p-center and p-median problems, Management Science 29 (1983) 482–497. doi:10.1287/mnsc.29.4.482