@article{DMGT_2018_38_3_a10,
author = {Hong, Xia},
title = {Completely {Independent} {Spanning} {Trees} in k-th {Power} of {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {801--810},
year = {2018},
volume = {38},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a10/}
}
Hong, Xia. Completely Independent Spanning Trees in k-th Power of Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 3, pp. 801-810. http://geodesic.mathdoc.fr/item/DMGT_2018_38_3_a10/
[1] T. Araki, Dirac’s condition for completely independent spanning trees, J. Graph Theory 77 (2014) 171–179. doi:10.1002/jgt.21780
[2] G. Chen and S. Shan, Homeomorphically irreducible spanning trees, J. Combin. Theory Ser. B 103 (2013) 409–414. doi:10.1016/j.jctb.2013.04.001
[3] G. Fan, Y. Hong and Q. Liu, Ore’s condition for completely independent spanning trees, Discrete Appl. Math. 177 (2014) 95–100. doi:10.1016/j.dam.2014.06.002
[4] T. Hasunuma, Completely independent spanning trees in the underlying graph of a line digraph, Discrete Math. 234 (2001) 149–157. doi:10.1016/S0012-365X(00)00377-0
[5] T. Hasunuma, Completely independent spanning trees in maximal planar graphs, in: Proceedings of the 28th Graph-Theoretic Concepts Computer Science (WG 2002), Lecture Notes in Comput. Sci. 2573 (2002) 235–245. doi:10.1007/3-540-36379-3_21
[6] X. Hong and Q. Liu, Degree condition for completely independent spanning trees, Inform. Process. Lett. 116 (2016) 644–648. doi:10.1016/j.ipl.2016.05.004
[7] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36 (1961) 445–450. doi:10.1112/jlms/s1-36.1.445
[8] F. Péterfalvi, Two counterexamples on completely independent spanning trees, Discrete Math. 312 (2012) 808–810. doi:10.1016/j.disc.2011.11.015
[9] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 36 (1961) 221–230. doi:10.1112/jlms/s1-36.1.221