Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_2_a7, author = {Borodin, Oleg V. and Bykov, Mikhail A. and Ivanova, Anna O.}, title = {More {About} the {Height} of {Faces} in {3-Polytopes}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {443--453}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a7/} }
TY - JOUR AU - Borodin, Oleg V. AU - Bykov, Mikhail A. AU - Ivanova, Anna O. TI - More About the Height of Faces in 3-Polytopes JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 443 EP - 453 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a7/ LA - en ID - DMGT_2018_38_2_a7 ER -
Borodin, Oleg V.; Bykov, Mikhail A.; Ivanova, Anna O. More About the Height of Faces in 3-Polytopes. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 443-453. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a7/
[1] S.V. Avgustinovich and O.V.Borodin, Neighborhoods of edges in normal maps, Diskretn. Anal. Issled. Oper. 2 (1995) 3–9, in Russian, translation in Ser. Mathematics and Its Applications 391 (1997) 17–22.
[2] O.V. Borodin, Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps, Diskret. Mat. 3 (1991) 24–27, in Russian.
[3] O.V. Borodin, Solving the Kotzig and Grünbaum problems on the separability of a cycle in planar graphs, Mat. Zametki 46 (1989) 9–12, in Russian, translation in Math. Notes 46 (1992) 835–837.
[4] O.V. Borodin, Colorings of plane graphs: a survey, Discrete Math. 313 (2013) 517–539. doi:10.1016/j.disc.2012.11.011
[5] O.V. Borodin, Minimal weight of a face in planar triangulations without 4- vertices, Mat. Zametki 51 (1992) 16–19, in Russian, translation in Math. Notes 51 (1992) 11–13.
[6] O.V. Borodin, Triangulated 3- polytopes with restricted minimal weight of faces, Discrete Math. 186 (1998) 281–285. doi:10.1016/S0012-365X(97)00240-9
[7] O.V. Borodin, Strengthening Lebesgue’s theorem on the structure of the minor faces in convex polyhedra, Diskretn. Anal. Issled. Oper., Ser. 1 9 (2002) 29–39, in Russian.
[8] O.V. Borodin and D.V. Loparev, The height of minor faces in normal plane maps, Diskretn. Anal. Issled. Oper. 5 (1998) 6–17, translation in Discrete Appl. Math. 135 (2004) 31–39. doi:10.1016/S0166-218X(02)00292-5
[9] O.V. Borodin and A.O. Ivanova, Describing 3- faces in normal plane maps with minimum degree 4, Discrete Math. 313 (2013) 2841–2847. doi:10.1016/j.disc.2013.08.028
[10] O.V. Borodin and A.O. Ivanova, The vertex-face weight of edges in 3- polytopes, Sibirsk. Mat. Zh. 56 (2015) 338–350, in Russian, translation in Sib. Math. J. 56 (2015) 275–284. doi:10.1134/s003744661502007x
[11] O.V. Borodin and A.O. Ivanova, Heights of minor faces in triangle-free 3- polytopes, Sibirsk. Mat. Zh. 56 (2015) 982–988, in Russian, translation in Sib. Math. J. 56 (2015) 783–788. doi:10.1134/S003744661505002X
[12] O.V. Borodin and A.O. Ivanova, The weight of faces in normal plane maps, Discrete Math. 339 (2016) 2573–2580. doi:10.1016/j.disc.2016.04.018
[13] O.V. Borodin and A.O. Ivanova, Heights of faces in 3- polytopes, Sibirsk. Mat. Zh. 58 (2017) 48–55, in Russian, translation in Sib. Math. J. 58 (2017) 37–42. doi:10.1134/S0037446617010050
[14] O.V. Borodin and A.O. Ivanova, Low minor faces in 3- polytopes, Discrete Math., accepted.
[15] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Describing faces in plane triangulations, Discrete Math. 319 (2014) 47–61. doi:10.1016/j.disc.2013.11.021
[16] O.V. Borodin and D.R. Woodall, The weight of faces in plane maps, Mat. Zametki 64 (1998) 648–657, in Russian. doi:10.4213/mzm1441
[17] O.V. Borodin and D.R. Woodall, Cyclic degrees of 3- polytopes, Graphs Combin. 15 (1999) 267–277. doi:10.1007/S003730050060
[18] B. Ferencová and T. Madaras, Light graphs in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661–1675.
[19] B. Grünbaum, Polytopal graphs, in: Studies in Graph Theory, D.R. Fulkerson, Ed., MAA Studies in Mathematics 12 (1975) 201–224.
[20] M. Horňák and S. Jendrol’, Unavoidable sets of face types for planar maps, Discuss. Math. Graph Theory 16 (1996) 123–142. doi:10.7151/dmgt.1028
[21] S. Jendrol’, Triangles with restricted degrees of their boundary vertices in plane triangulations, Discrete Math. 196 (1999) 177–196. doi:10.1016/S0012-365X(98)00172-1
[22] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane—a survey, Discrete Math. 313 (2013) 406–421. doi:10.1016/j.disc.2012.11.007
[23] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Eas. SAV (Math. Slovaca) 5 (1955) 101–113.
[24] A. Kotzig, From the theory of Eulerian polyhedrons, Mat. Eas. SAV (Math. Slovaca) 13 (1963) 20–34.
[25] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569–570. doi:10.1111/j.1749-6632.1979.tb32837.x
[26] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19 (1940) 27–43.
[27] B.Mohar, R. & Skrekovski and H.-J. Voss, Light subraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003) 261–295. doi:10.1002/jgt.10144
[28] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics, W.T. Tutte (Ed.), (Academic Press, New York, 1969) 287–293.
[29] M.D. Plummer, On the cyclic connectivity of planar graph, Graph Theory and Application (Springer, Berlin, 1972) 235–242.
[30] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. (Geometrie), 3AB 12 (1922) 1–139.
[31] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426. doi:10.1007/BF01444968